B06: DM–CMB The Dark Matter (DM) Search using the Cosmic Microwave Background (CMB)

Eiichiro Komatsu (Max Planck Institute for Astrophysics / Kavli IPMU) Symposium, March 7, 2023

ESA's Planck

Credit: ESA

Credit: ESA

Temperature (smoothed) + Polarisation

- / -

11

11111-

Standard Cosmological Model (ACDM) Requires New Physics Physics beyond Standard Model of elementary particles and fields

Dark Sector: What is dark matter (CDM)? What is dark energy (Λ)?

behind cosmic inflation?

Polarisation of the CMB may hold the answers to these questions.

Early Universe: What powered the Big Bang? What is the fundamental physics

Standard Cosmological Model (ACDM) Requires New Physics Physics beyond Standard Model of elementary particles and fields

- **Dark Sector**: What is dark matter (CDM)? What is dark energy (Λ)?
 - Cosmic birefringence in cross-correlation of E- and B-mode polarisation
- Early Universe: What powered the Big Bang? What is the fundamental physics behind cosmic inflation?
 - Imprint of primordial gravitational waves in B-mode polarisation
- Polarisation of the CMB may hold the answers to these questions.

nature reviews physics

About the journal ~ Explore content \sim

nature > nature reviews physics > review articles > article

Many of the B06 activities are explained in this article. Review Article Published: 18 May 2022 New physics from the polarized light of the cosmic microwave background Key Words:

Eiichiro Komatsu

Nature Reviews Physics (2022) Cite this article

Metrics

Publish with us \checkmark

Cosmic Microwave Background (CMB) Polarization **Parity Symmetry**

The Science Targets: Examples How can we use the CMB polarisation to learn about the DM?

- **Do the DM fields violate parity symmetry?**
 - Why not? The weak interaction violates parity symmetry.
 - E.g., axion-like fields.
 - polarised light of the CMB?
- Do the DM fields have a higher spin?

 - waves which can be observed in the CMB polarisation?

• **Example project:** How does the parity-violating DM field affect the propagation of

• Why not? The Higgs field is the only known field of elementary particles with zero spin.

• **Example project:** Do higher-spin fields generate new features in the gravitational

The Team A small yet "dream team"

Eiichiro Komatsu (MPA / Kavli IPMU)

Maresuke Shiraishi (Suwa Univ. Sci.)

研究代表者

研究分担者

Ippei Obata (Kavli IPMU)

Kai Murai (ICRR -> Tohoku Univ.) • 研究協力者

Toshiya Namikawa (Kavli IPMU)

Fumihiro Naokawa (Univ. Tokyo)

• 研究協力者

Credit: WMAP Science Team The surface of "last scattering" by electrons (Scattering generates *polarisation*!)

What powered the Big Bang?

What is dark matter/energy?

Achievements: Highlight (4.2022 – 3.2023) Do the DM fields violate parity symmetry? New measurement and interpretation of "cosmic birefringence"

- - Eskilt, **EK**, "Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data", published in PRD.
 - Nakatsuka, Namikawa, EK, "Is cosmic birefringence due to dark
 - from early dark energy", published in PRD.
 - dark energy", published in JCAP.

energy or dark matter? A tomographic approach", published in PRD.

Murai, Naokawa, Namikawa, EK, "Isotropic cosmic birefringence"

Gasparotto, Obata, "Cosmic birefringence from monodromic axion

heard this.

I have a new idea!

