Studying dark matter with observations of small-scale structure

Kavli IPMU March 8, 2023

Composition of the Universe

Dark Matter Candidates

Bertone & Tait, Nature 562, 51 (2018)

Dark Matter Candidates

https://arxiv.org/abs/1707.04591

Astrophysical observations provides the only robust, positive measurement of dark matter and bounds the mass range of dark matter candidates

to learn about the

Current and Near-Future Experiments

Advances in Simulations

High-resolution cosmological simulations are now able to robustly include core elements of baryonic physics at dwarf galaxy scales (e.g., FIRE/Latte, EAGLE/APOSTLE, etc.)

7

The Small-Scale Structure of Dark Matter

Figure: Nadler, Schutz, ADW (2203.07354)

Strong Gravitational Lensing

Lovell et al. (2012)

Gravitational

Imaging

Lyman-alpha Forest Measurements

Simulation of Dark Matter

Milky Way Satellite Galaxy **Discovery Timeline**

An Accurate Census of Milky Way Satellite Galaxies

ADW, Bechtol, et al. (2020)

Accurate Census of Yay Satellite Galaxies

ADW, Bechtol, et al. (2020)

8.5

 $\log(M_{\rm peak}/M_{\odot})$

PS1

 M_V [mag]

9.0

Predicted Detection Probability

Observed

Predicted

9.5

Milky Way Satellite Luminosity Function

Nadler et al. ApJ 893, 48 (2020)

Dark Matter Physics

Warm Dark Matter Constraints

Constraints from: Viel et al. 2005, Viel et al. 2006, Seljak et al. 2006, Polisensky et al. 2011, Kennedy et al. 2014, Birrer et al. 2017, Irsic et al. 2017, Jethwa et al. 2017, Murgia et al. 2018, Vegetti et al. 2018, Ritondale et al. 2019, Gilman et al. 2019a,b, Hseuh et al. 2019, Palanque-Delabrouille et al. 2020, Enzi et al. 2020, Rudakovskyi et al. 2021, Banik et al. 2019,2021, Nadler et al. 2019,2021a,b, etc.

Dark Matter Physics

Dark Matter Candidates

Sterile Neutrino Warm Dark Matter

Warm dark matter has large primordial velocity dispersion; free-streaming suppresses formation of low-mass halos Sterile Neutrino WDM MW Satellites 10^{-7} X-ray Bounds SDSS + ClassicalSpace — DES + PS1 DM Overproduction Phase 10^{-9} $\sin^2(2\theta)$ Dwarf Galaxy 10^{-11} **Dark matter** DM Underproduction must be colder 10^{-13} Interpretation of 3.5 keV line (Boyarsky et al. 2014) 10^{-15} 0.550510010 m_s [keV]

Nadler, ADW, et al. PRL, 126, 091101 (2021) See also: Schneider (2016), Cherry & Horiuchi (2017), Dekker et al. (2022), An et al. (2023)

Sterile Neutrino Mixing Angle

Dark Matter Candidates

Interacting Dark Matter

Dark Matter Candidates

Fuzzy Dark Matter

The de Broglie wavelength of dark matter must be smaller than the halos hosting ultra-faint dwarf galaxies (~1 kpc) Ultra-light Axion FDM 10^{-8} MW Satellites CAST DES + PS1 10^{-10} SBP SN1987A X-rays 10^{-12} Haloscopes $g_{\phi\gamma}~[{
m GeV^-}$ Dark matter must 10^{-14} be more massive -1610 18 10 **Neal's Talk?** 2010 10^{-22} 10^{-10} 10^{-18} 10^{-6} 10^{-14} $m_{\phi} \, [\text{eV}]$

Nadler, ADW, et al. PRL, 126, 091101 (2021) See also: Irsic et al. (2017), Rogers et al. (2021), Dalal & Kravtsov (2023)

Axion-Photon Coupling

Pushing to Lower Mass

Standard CDM predicts the existence of small subhalos.

How do we detect completely dark subhalos?

Analogy: Saturn's Shepard Moons

Shepard moons are detectable indirectly through their gravitational wake

Stellar Streams

Tidal remains of dwarf galaxies and star clusters

Stars spread out along original orbit; fragile dynamical systems

Sensitive to both the smooth and clumpy distribution of matter

A. Price-Whelan

Isochrone Selection

w/ Nora Shipp

NGC 1904

Select old, metal poor stars in bins of distance

Shipp, ADW, DES Collaboration (2018) ³⁴

Tour Through the Milky Way Halo w/ Nora Shipp

Density Variations in Stellar Streams

Palomar 5 (Bonaca et al. 2019)

GD-1 (Price-Whelan et al. 2018)

ATLAS-Aliqa Uma (Li et al. 2020)

Jet (Ferguson et al. 2021)

Dark Matter Constraints from Stellar Streams

Bovy et al. 2017

Subhalos of different mass perturb stream density on different scales.

1D power spectrum stream stellar density contains information about impact history

Banik et al. 2021

Maybe Neal will talk more about streams and fuzzy dark matter

Current and Near-Future Experiments

DECam Local Volume Exploration Survey

The Vera C. Rubin Observatory is Coming!

Detect the faintest known satellites out to the edge of the Milky Way halo!

INC TRADERS

Summary

- Astrophysics and cosmology probe fundamental particle physics of dark matter via gravity.
- Observations and simulations continue to improve our ability to disentangle dark matter physics from baryonic effects.
- Exciting new experiments are under construction!