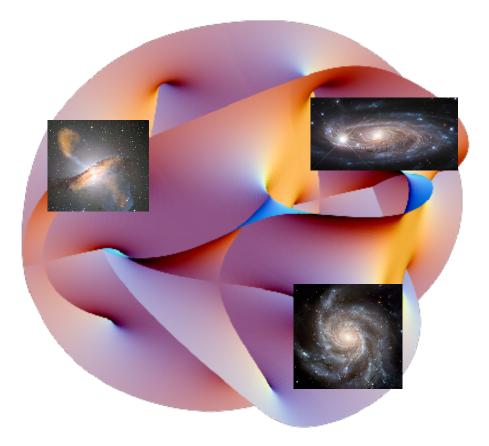
Galaxies in the Axiverse

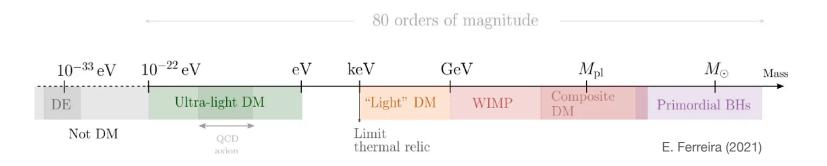


Neal Dalal Perimeter Institute

With Andrey Kravtsov (U. Chicago)

Dark Matter

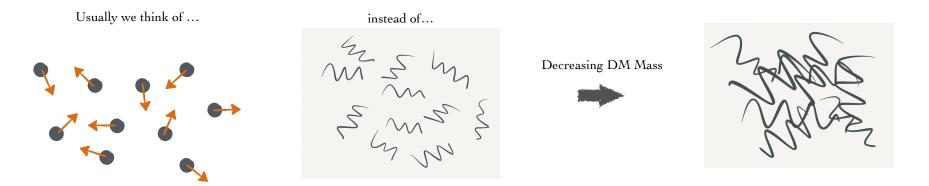
- Most of the mass that clusters is DM. Properties remain poorly known!
- For example, mass of DM particle is unknown to many orders of magnitude



 String "axiverse" allows possible masses spanning many orders of magnitude, including ultra-light (m < eV/c²).

Ultra-light Dark Matter

• In ultra-light regime, particles overlap significantly



- Number density $n = \rho/m$, and de Broglie wavelength $\lambda = h/mv$
- In our Galaxy, $n(\lambda/2\pi)^3 > 1$ for $m < 1 \text{ eV}/c^2$. In this regime, can think of overlapping particles as a coherent field, oscillating at frequency $\omega = mc^2/\hbar$, with coherence length $r = \lambda/2\pi$, and coherence time $\delta t \sim r/\sigma_v = \hbar/m\sigma_v^2$.

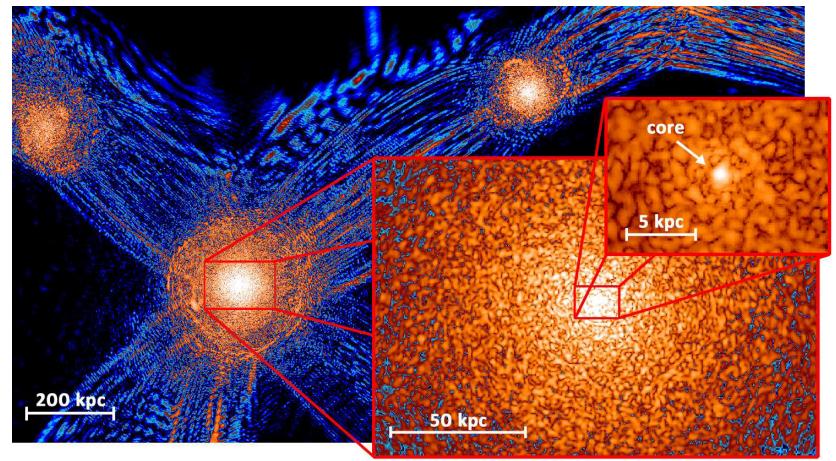
Ultra-light Dark Matter in galaxies

- In this regime, DM exhibits wave-like behaviour.
- For most of ultra-light mass range, wave-like DM is indistinguishable from regular CDM.
- But for $m \in 10^{-22} 10^{-20} \,\mathrm{eV}$, the de Broglie wavelength is relevant for galaxy astrophysics. This regime is called "fuzzy" dark matter (FDM).

• e.g., in Milky Way with v=200 km/s, m=10⁻²² eV gives
$$\lambda = \frac{h}{mv} \approx 0.6$$
 kpc.

• This can do interesting things for galaxies, like removing central DM cusps, or suppressing low-mass DM substructure. But one particular effect captured the interest of many DM researchers...

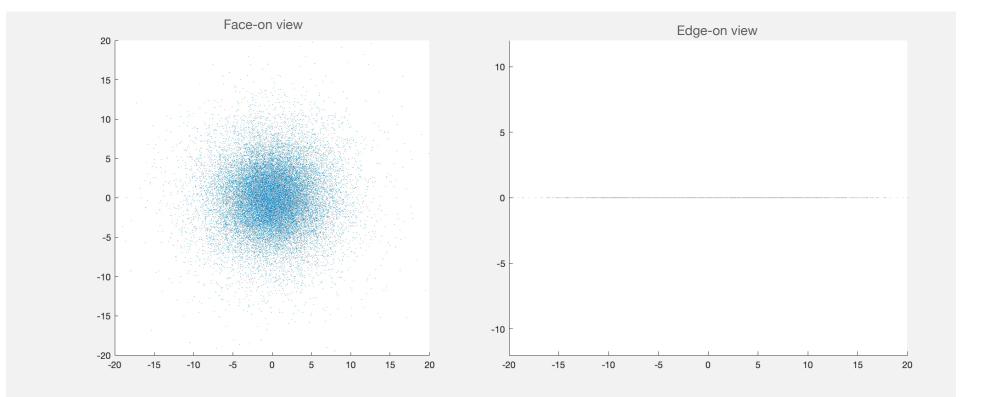
FDM wave interference



Schive et al., Nature Physics, 10, 496 (2014)

Gravitational heating from FDM

- Interference fringes have density contrast $\delta \rho \sim \rho$ everywhere all of the time
- These lead to fluctuating gravitational forces that can perturb stars
- Where to look for this signature of FDM? Crude estimate:
 - $\delta M \sim \delta \rho \, \lambda^3 \propto \rho / \sigma_v^3 \Rightarrow$ acceleration perturbation $\delta a \sim G \, \delta M / \lambda^2 \propto G \rho / \sigma_v$
 - At that location, enclosed mass $M \sim \rho R^3$, so $a \sim GM/R^2 \propto G\rho R$
 - So fractional effect $\delta a/a \propto (R \sigma_v)^{-1}$
- Biggest effect where R is small and σ_v is small, i.e. centres of smallest halos.



Ultra-faint dwarf galaxies

- Best place to look for FDM effects is the centre of smallest, DMdominated galaxies.
- Local group has lots of tiny galaxies, e.g. Boötes I, Grus II, Leo IV, etc...
- Completely DM dominated (e.g., M/L ~ 300 inside r_{1/2})
- Stellar ages ≥10 Gyr, so plenty of time to experience FDM effects.
- Unlike soliton, heating effect is understood! Allows us to use even just 1-2 galaxies to constrain FDM.

Segue 1 and Segue 2

- Smallest & darkest known UFDs (but not huge outliers).
- Have half-light radii of 26 pc and 37 pc

THE ASTROPHYSICAL JOURNAL, 733:46 (20pp), 2011 May 20 \odot 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/733/1/46

A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY*

JOSHUA D. SIMON¹, MARLA GEHA², QUINN E. MINOR³, GREGORY D. MARTINEZ³, EVAN N. KIRBY^{4,8}, JAMES S. BULLOCK³, MANOL KAPLINGHAT³ LOUIS F. STPIGAPI^{5,8} BETH WILLMAN⁶ PHILIP L. CHOL⁷ FRIK L. TOLLEPUD³ AND IOF WOLE³

- Velocity dispersions $\lesssim 2-3$ km/s
- Extensive spectroscopic observations of member stars

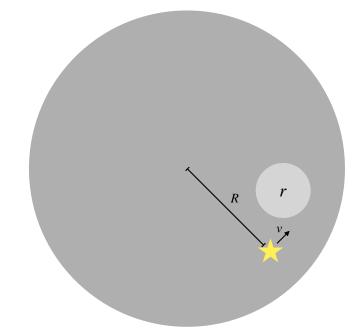
THE ASTROPHYSICAL JOURNAL, 770:16 (16pp), 2013 June 10 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/770/1/16

SEGUE 2: THE LEAST MASSIVE GALAXY*

EVAN N. KIRBY^{1,4}, MICHAEL BOYLAN-KOLCHIN^{1,4}, JUDITH G. COHEN², MARLA GEHA³, JAMES S. BULLOCK¹, AND MANOJ KAPLINGHAT¹

Ballpark estimate

- Consider typical star in galaxy of size *R*, moving at velocity $v \sim \sigma_v$.
- Enclosed mass is $M \sim 3 \sigma_{v^2} R/G$
- FDM fluctuation of size *r*, with $\delta \rho \sim \rho$.
 - $\delta M \sim (r/R)^3 M$, $\delta \Phi \sim G \, \delta M/r \approx 3 \, \sigma_{v^2} \, (r/R)^2$
 - $\delta v \sim \delta \Phi / v \approx 3 \sigma_v (r/R)^2$
- In time *t*, star encounters $N \sim vt/r$ blobs, so variance increases by $\Delta \sigma_{v^2} \approx N \, \delta v^2 \approx 9 \, \sigma_{v^3} t \, r^3/R^4 \approx 9 \, (\hbar/m)^3 t \, R^{-4}$.



• So we can solve for mass *m* that makes $\Delta \sigma_v^2 \approx \sigma_v^2$ in time *t*. Plugging in *t* =10 Gyr, *R*=50 pc, $\sigma_v = 3$ km/s gives $m \sim 10^{-19}$ eV.

FDM constraints from UFDGs

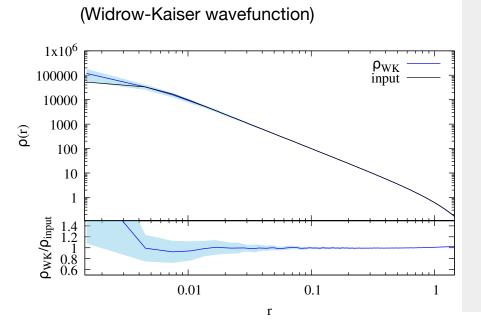
- We use simulation-based inference to constrain FDM using UFDs, i.e. we compute how often simulations reproduce observed data.
 - Data are velocities of individual member stars.
 - We could also use positions of individual stars, but spectroscopic selection function is unknown to us, so we instead fit half-light radius of population.
- Simulations evolve stars in FDM potentials for 10 Gyr.
- Marginalize over unknown halo parameters (M_{vir} , c_{vir}), and initial stellar distribution, by running lots of different sims.
- Problem: Schrödinger-Poisson sims cannot be done yet for masses of interest, since computational expense scales like *m*_{FDM}⁵! Need different approach...

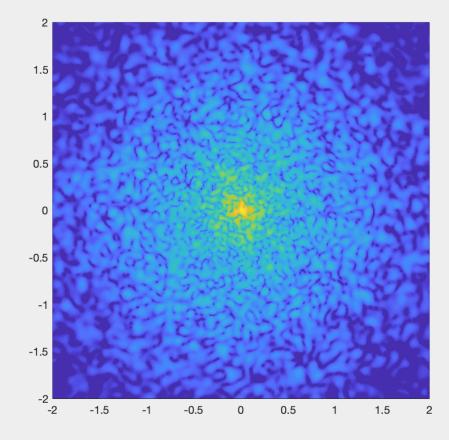
Alternative method

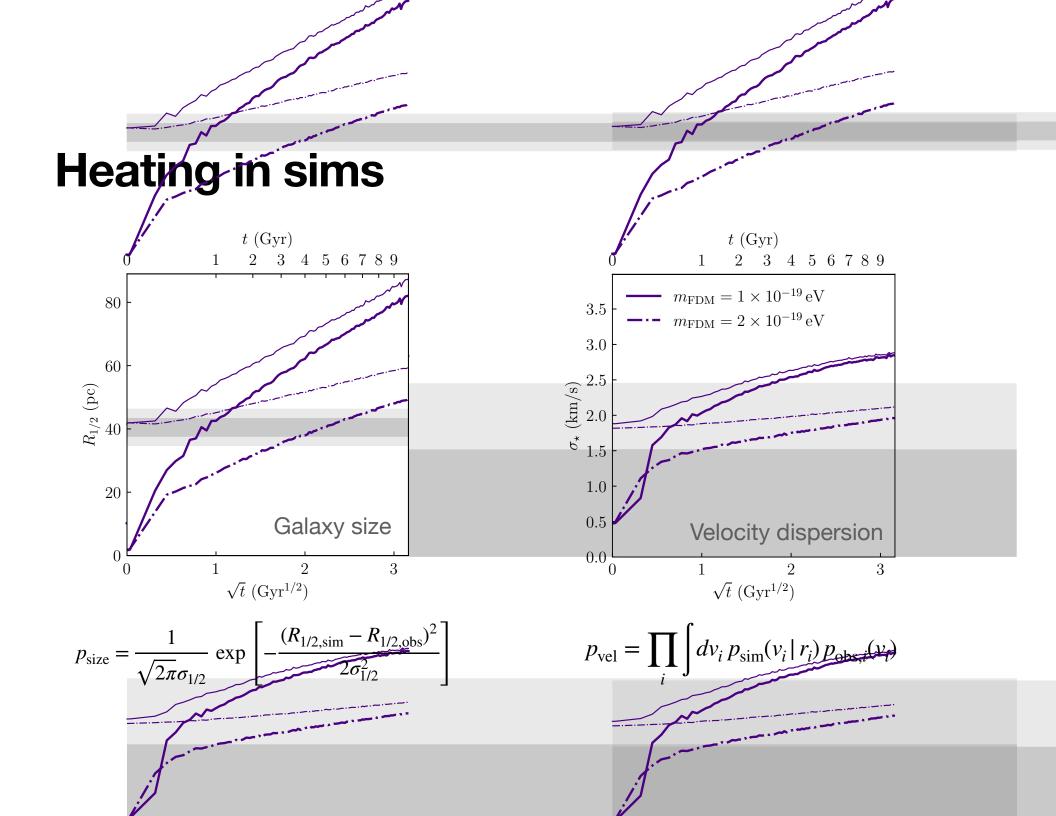
- If we have a known (time-averaged) potential for the halo, we can determine the eigenfunctions of the (average) Hamiltonian. Each eigenfunction evolves trivially in time $\propto e^{-iEt/\hbar}$.
- So let's find the combination of eigenfunctions that adds up on average to the desired density profile $\langle \rho \rangle = m \langle |\psi|^2 \rangle$, with $\psi(\mathbf{x}, t) = \sum_i a_i e^{-i\omega_i t} F_i(\mathbf{x})$
- Widrow & Kaiser (1993): use $\langle |a_i|^2 \rangle \sim f(E_i)$, for distribution function f(E).
- In simple cases (e.g. spherical potential), we can solve for f(E) analytically.
- This gives a simple way to evolve realistic wavefunctions, and is faster by orders of magnitude! Instead of giant supercomputers, our simulations run on 1 node. Caveat: only accurate to 1st order.

$$\rho = m |\psi|^2,$$

$$\psi(\mathbf{x}, t) = \sum_i a_i e^{-i\omega_i t} F_i(\mathbf{x})$$

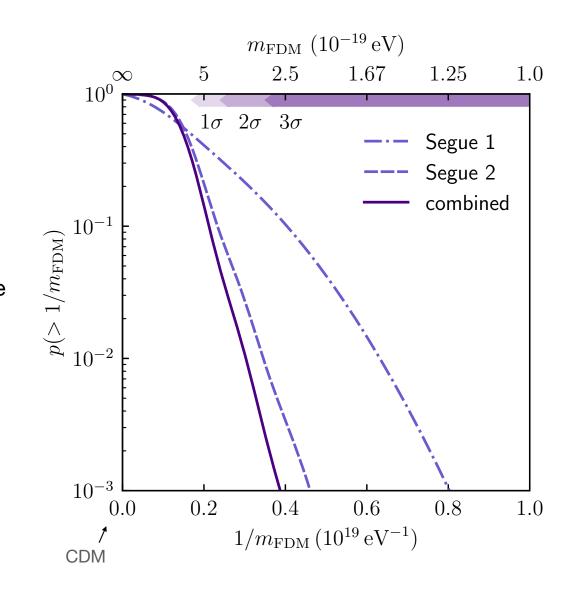






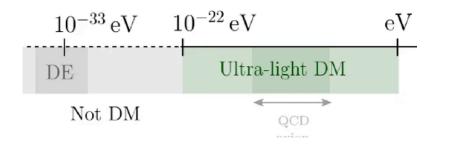
Results

- Find $m_{\rm FDM} > 3 \cdot 10^{-19} \, {\rm eV}$ at >99% confidence, using Segue 1 & Segue 2. Previous bounds from Ly $_{
 m A}$ F are $m \gtrsim 10^{-21} \, {\rm eV}$
- Our constraints are highly conservative due to neglect of soliton, and assumed prior $P \sim m_{\text{FDM}^{-2}}$.
- Essentially, rules out "fuzzy" regime:
 - linear power spectrum identical to Λ CDM out to $k \sim 200 \text{ Mpc}^{-1}$.
 - halo mass function identical to $\Lambda {\rm CDM}$ down to $M \sim 2 \cdot 10^5 M_{\odot}$



Upshot

 Using galaxies — either individually, or in large-scale structure — we can probe ultra-light particles over a huge range of masses!



• Galaxies probably can't probe even higher masses (e.g., $m > 10^{-18} \text{ eV}$). But we can extend the constraints using another probe: black hole super-radiance! Has the potential to go another ~8 orders of magnitude in *m*!