SUBARUPRIMEFOCUSSPECTROGRAPH

Updates of the next-generation Subaru facility instrument under commissioning

Naoyuki Tamura [Kavli IPMU by 3/31 → Subaru, NAOJ from 4/1] On behalf of PFS collaboration

Mar 8 2023 JST @Kavli IPMU 学術変革領域 FY2022 シンポジウム Prime Focus Spectrograph

PFS subsystems distribution

PFS commissioning has been underway.

Engineering First Light in Sep 2022

Successfully observed many stars simultaneously by intentionally positioning the fibers on the targets.

Wavelength (630-970nm

60

300s exposure of stars in an NGC 1980 field w/ SM1 red camera

Now two fiber cables & two spectrograph modules in place

Cable B1 & B2

on the telescope spider

Successful installation of 2nd Fiber Cable (Cable B2) in April 2022.

- Completed installing SM3 in early Nov 2022.
- Started its operation right away according to the good results of post-installation tests.

The observation in Nov 2022 with doubled multiplicity: $\sim 600 \rightarrow \sim 1200$

Two more modules to come for the full multiplicity of ~2400

300s exposure of stars in an NGC 1980 field w/ SM1 & SM3 blue cameras

8mm between adjacent Cobras

Fiber positioning accuracy

- Accurately predict (x,y) from (α, δ) .
- Accurately move the fiber to requested (x.y). 2.

x (mm)

Raster scan

To generate a 2D map of flux coming into the instrument around each fiber.

40cm

a offect of flux poak from the middle is a

The fiber diameter is equivalent to 100um

- 1".13@Field center
- 1".03@Field edge

Residual [um]

Fiber positioning accuracy

7.5

7.0

5.0

- 4.5

Systematic errors are dominant.

- Translational/rotational offset
 Some issues in the field acquisition and/or guiding?
- Scale error
 - ← Inaccurately modeled?

After numerically subtracting these offsets and scale error.

- Furthermore, averaging the errors
- from 10 sets of raster scan data.

Takeaways:

- The error seems dominated by the large-scale & small-scale systematics. Minimizing these is the priority.
- The contribution from the positioner's stochasticity seems very little.

The fiber diameter is equivalent to 100um

- 1".13@Field center
- 1".03@Field edge

Fiber positioning accuracy

7.5

6.0

- <u>- -</u> - magnitude" |

5.0

4.5

4.0

Systematic errors are dominant.

- Translational/rotational offset ← Some issues in the field acquisition and/or guiding?
- Scale error
 - Inaccurately modeled?
- After numerically subtracting these $-6.5 \frac{15}{9}$ offsets and scale error.
 - Furthermore, averaging the errors from 10 sets of raster scan data.

Takeaways:

- The error seems dominated by the large-scale & small-scale systematics.
 - Minimizing these is the priority.
- The contribution from the positioner's stochasticity seems very little.

The fiber diameter is equivalent to 100um

- 1".13@Field center
- 1".03@Field edge

Fiber positioning accuracy

Fiber positioning sequence

1. Accurately predict (x,y) from (α, δ) .

- 2. Accurately move the fiber to requested (x.y).
 - Iterative process between PFI and MCS: Measure the current positions, calculate deltas, and move the fibers.
 - 12 iterations are applied but improvement seems little after ~7th iteration.
 - >95% success rate is now stably achieved with 4.8s MCS exposure.
 - The processing time of each iteration is one vital engineering item:
 - ~400s/~270s by 12/7 iterations, respectively.
 - Detailed profiling & optimization
 are needed, while MCS data I/O
 seems major contribution

Data processing

Updates are applied to the pipelines continuously.

→ <u>Weekly</u> integration test: 2D (Princeton), 1D (LAM) & <u>End-to-end (IPMU)</u>

<u>Current status:</u>

- The pipeline (Lupton, Price+) is getting to be able to process data from engineering observations all the way down to flux calibration that is being developed at NAOJ (Yamashita, Mineo+).
- 2D PSF modeling as a key to very good sky subtraction still needs substantial development, while the spectrograph part seems quite well modeled already (Caplar, Hayashi, Yabe, 'PFI/DCB (fiber 255, angle=26.1')
- Useful QA plots are be those for accuracies of¹ calibration and sky sub appropriate tools neec (Hamano, Tanaka, Yabe,⁰ Siddiqu²⁰⁰ Price+)⁴⁰⁰

Updated timeline from now onward

Successful Cable B3 installation on Feb 7-8

One more cable is remaining. It will be a big job again but should now be a low-risk process:

- The cable is already at the Subaru summit.
- The earlier 3 cables were successfully installed.
- Most of the Daycrews and PFS members are familiar with the installation process.

NIR Cameras #2,#3, #4 (N2-4) at JHU

• N2:

- All tests were done well, except for a sanity check of image quality after focus offset correction work.
- Documentation for the preship review on 3/13.
- N3:
 - All tests were done well, except for the focus offset correction work and subsequent sanity check of image quality.
 - Hope it will be "ready" soon.
- N4:
 - The cryostat assembly is done. Next is baking, with pumping and then cooling for tests.
 - The detector characterization is ongoing in the test dewar.
- Near-term goal is to deliver N2 to Subaru in March (and let N3 follow that soon).

Spectrograph System (SpS) at LAM

- Tests of the 1st NIR camera (N1) as part of Spectrograph Module #2 (SM2) are ongoing.
 - N1 itself was fully assembled and tested at JHU, passed the preship review and was shipped to LAM.
 - The image quality at LAM looks as good as at JHU even with the system at 5°C in the chamber to simulate the operating condition at Subaru.
 - There were issues on the ion pumps ... but the pumps were replaced and the operation has been recovered.
- The assembly & test of the remaining visible cameras are also ongoing.
- Aiming at the delivery to Subaru of SM2 (BRN) & SM4 (BR) by mid July (although getting tight)

Visible camera under metrology

Updated timeline from now onward

EDR: Engineering Data Release

Science with PFS in the dark sector of the universe

Comprehensive challenges to the major questions of modern astronomy & cosmology by three pillar survey components:

- PFS large-sky survey in the framework of Subaru Strategic Program (SSP).
 - ~360 nights for ~5 years
 - Three pillars
 - Cosmology
 - Galaxy & AGN evolution
 - Galactic Archaeology

<u>Timeline:</u>

- System integration & survey planning are ongoing.
- On-sky commissioning from late 2021 to 2023 end.
- Science operation from 2024.
- \$100M project, \$1M shortage

Testing ACDM	Assembly history of galaxies	Importance of IGM
 Nature & role of neutrinos Expansion rate via BAO up to z=2.4 PFS+HSC tests of GR 	 PFS+HSC galaxy association Absorption probes with PFS QSOs and HSC host galaxies 	 Search for emission from stacked spectra dSph as relic probe of reionization
 Curvature of space: Ω_K Primordial power spectrum Nature of DM (dSphs) 	• Stellar kinematics and chemical abundances – MW & M31 assembly history	feedback • Past massive star IMF from element abundances
Search of MW dark haloSmall-scale tests of structure growth	 Halo-galaxy connection: M_*/M_{halo} Outflows & inflows of gas Environment-dependent evolution 	 Physics of cosmic reionization via LAEs & 21cm studies Tomography of gas & DM

PFS science meeting @Kashiwa campus, Mar 2-3

Active & productive in-person+Zoom discussions to brush up the survey plan and proposal of PFS SSP.

PFS will be a very powerful tool to find crucial evidence for the dark matter profile around dwarf galaxies (see e.g. Hayashi's talk).

PFS instrumentation is now back on the home stretch.

- Engineering observations
 - Engineering First Light in Sep 2022
 - Fiber positioning accuracy is getting better. Minimizing the systematic errors that
 - dominate the accuracy is next priority.

Ongoing hardware development

SM2 is being tested at LAM with the NIR camera. 3 other NIR cameras are being tested at JHU,

Timeline

- Install Cable B4 on the telescope in May. Install 1 NIR cameras by mid April, and the rest of SpS in June-July.
 - NIR first light in the April run.
 - 1st run with the full hardware in July.
- Open-use readiness review in Jan 2024 for science operation from S24B.

- ✓ Official web site <u>https://pfs.ipmu.jp/</u>
- Membership registration <u>https://pfs.ipmu.jp/research/regist_collab.html</u>
- ✓ Blog <u>https://pfs.ipmu.jp/blog/</u>
- ✓ Instagram <u>https://www.instagram.com/pfs_collaboration/</u>