

Cosmology with Subaru HSC survey

<u>Sunao Sugiyama</u> (Kavli IPMU → UPenn)

In collaboration with Hironao Miyatake, Surhud More, Xiangchong Li, Masahiro Takada, Roohi Dalal, Tianqing Zhang, Rachel mandelbaum, Michael Strauss, and many others in HSC Collaboration

FY2022 "What is dark matter? - Comprehensive study of the huge discovery space in dark matter"

Observational cosmology Standard model of the universe

- Standard model of the universe = ΛCDM model
 - Cosmology constant (Λ) + Cold Dark Matter (CDM) -
 - Inflation seeds fluctuation \rightarrow Structure formation
- CMB, accelerating expansion (SNe), galaxy clustering
- The era of **Precision cosmology**
 - Determining cosmo param at percent level.

Break down of ACDM? S_8 tension between early- vs Late-time universe

Heymans+ (2020)

Weak lensing **Gravitational lensing effect by large-scale structure**

Weak lensing

foreground matter distribution

S

Credit: NASA/ESA and sdss.org, edited by SS

The shape of background galaxy is distorted by the gravitational lensing effect by

hear:
$$\gamma \propto \Omega_{\rm m} \int dz_{\rm l} \frac{D_A(z_{\rm l})D_A(z_{\rm l}, z_{\rm s})}{D_A(z_{\rm s})} \delta_{\rm m} \propto \Omega_{\rm m} \sigma_8^{1/2}$$

→ the foreground matter distribution

Joint analysis of three two point correlation functions 3x2pt = cosmic shear + galaxy-galaxy lensing + galaxy clustering

Credit: NASA/ESA and sdss.org, edited by SS

Subaru Hyper Suprime-Cam (HSC) Shape catalog (Li+ 2022)

- High quality image of galaxy shape **PSF** $\sim 0.6''$
- Light collecting power of Subaru telescope
 - \rightarrow Deep imaging survey
 - \rightarrow high number density of galaxies per unit area
 - **HSC**: $n_s \sim 20$ gals/arcmin²
 - DES: $n_{\rm s} \sim 6.4 \text{ gals/arcmin}^2$
 - KiDS: $n_s \sim 8.5 \text{ gals/arcmin}^2$
- HSC-Y3 Shape catalog
 - Area = 430deg^2
 - Shape measurements based on image simulation
 - Shear estimation bias: $|\delta m| < 9 \times 10^{-3}$

3x2pt analysis with Subaru HSC and SDSS Galaxy sample definition for 3x2pt analysis **HSC** source redshift

$$P(z_{\rm s})dz_{\rm s} \ge 0.99$$

SDSS DR11 spectroscopic galaxy

- Area ~ 8000 deg^2
- Three redshift bins
- Luminosity cut \rightarrow avoiding redshift evolution of galaxy property in each bin.

wide field imaging survey

Challenges for the precision cosmology with HSC Precision and Robustness

- For the precision cosmology...
- Model uncertainty
 - Galaxy bias, baryonic effect
 - Scale cut
- Photo-z uncertainty
- Internal consistency of probes
- **Confirmation bias** \bullet

Halo-based model

$$P_{
m gm}(k) = rac{1}{ar{n}_{
m g}} \int \mathrm{d}M rac{\mathrm{d}n_{
m h}}{\mathrm{d}M} ig \langle N_{
m c}
angle(M) \left[1 + rac{\lambda_{
m s}(M)}{ar{u}_{
m s}(k;M,z)}
ight] rac{P_{
m hm}(k;M)}{P_{
m hm}(k;M)}$$

Validation of model Mock challenge

Compare

Validation of model Mock challenge

Compare

Validation of model Mock challenge

fiducial

Uncertainties in galaxy-halo connection

Baryonic effect on cosmic shear

Residual PSF leakage on cosmic shear

Photo-*z* **uncertainty** photo-*z* error

Potential photo-z bias

- Less galaxies at high redshift \rightarrow less calibrated
- Calibration data is limited to COSMOS field (2 deg^2)

Wrong photo-*z* estimate causes wrong amplitude of lensing signal

 \rightarrow causes the bias in $S_8!$

Photo-*z* **uncertainty Self-calibration of photo-***z*

Self-calibration of photo-z bias with multiple lens bins (Oguri&Takada 2010) Ratio of $\Delta\Sigma$ in different lens bin gives source redshift information.

We Introduce the photo-z bias parameter $p^{true}(z) = p^{est}(z + \Delta z_{ph})$ \rightarrow evaluate the model with $\Delta z_{\rm ph}$

Without replying on any prior information of photo- z_{i} , we can automatically calibrate the photo-z bias.

- which is true catalog but the others are fake.
- results

If a problem is found, we come back to the test stage.

Summary HSC-Y3 cosmology results are coming soon!

- The 3x2pt HSC-Y3 analyses are unblinded in Dec 2022. Papers are in collaboration review.
- HSC-Y3 cosmology projects will come out together early April! Keep an eye on them!
 - 3x2pt (SS, Miyatake, More+)
 - Cosmic shear tomography in Real space (Li+)
 - Cosmic shear tomography in Fourier space (Dalal+)

