Update from group C02: **Cosmic structure formation**

Shin'ichiro Ando University of Amsterdam / University of Tokyo

GRavitation AstroParticle Physics Amsterdam

Dark Matter Symposium March 8, 2023

C02: Members

PI + *co*-*I*

Shin'ichiro Ando

Neal Dalal

Takahiro Nishimichi

Takashi Okamoto Masato Shirasaki

Shunichi Horigome

Shigeki Inoue

Collaborators

Yohsuke Enomoto

Kohei Hayashi

- Cusps in density profiles
- Very many small (sub)structures

Cores in density profiles induced by self scattering

• Cutoff at sub-galaxy scale in the power spectrum

Sterile neutrinos

Pattern induced by de Broglie length at sub-galactic scales

Ultralight bosons

Output. oman scale structure

Release of public codes (Ando et al.)

 Galaxies and dark matter structure classification (Inoue, Okamoto et al.)

Primordial b		

SIDM modeling cosmological (Shirasaki, Horigo pto, Nishimichi)

I.)

os falling aki,

SIDM

- Numerical simulations of WDM halos and subhalos (Okamoto, Inoue et al.)
- Developing semi-analytical models and constraints from satellite number counts (Ando et al.)

- Tight constraints using stellar motion in ultrafaint dwarf galaxies (Dalal)
- Analytical models of core-halo structure (Taruya)

output. oman scale structure

• Release of public codes (Ando et al.)

 Galaxies and dark matter structure classification (Inoue, Okamoto et al.)

SIDM modeling cosmological (Shirasaki, Horigo

- Numerical simulations of WDM halos and subhalos (Okamoto, Inoue et al.)
- Developing semi-analytical models and constraints from satellite number counts (Ando et al.)

- Tight constraints using stellar motion in ultrafaint dwarf galaxies (Dalal)
- Analytical models of core-halo structure (Taruya)

Dark matter density profile estimation with cosmological models

- Dark matter density profile of astronomical objects (dSph, MW) is important to study the nature of dark matter (mass, cross section, self-interaction)
- Cosmological models are useful to estimate these profiles by using stellar data
 - Satellire prior: prior on stuructural parameters of dSph dark matter profiles based on the extended Press-Schechter formalism
 - SHMR prior: empirical relation between stellar and dark matter mass
 - SIDM profile model: gravothermal fluid model calibrated by N-body simulation

Horigome et al. arXiv:2207.10378

Dark matter density profile estimation with cosmological models

- Dark matter density profile of astronomical objects (dSph, MW) is important to study the nature of dark matter (mass, cross section, self-interaction)
- Cosmological models are useful to estimate these profiles by using stellar data
 - Satellire prior: prior on stuructural parameters of dSph dark matter profiles \bigcirc based on the extended Press-Schechter formalism
 - **SHMR prior**: empirical relation between stellar and dark matter mass \bigcirc
 - **SIDM profile model:** gravothermal fluid model calibrated by N-body simulation \bigcirc

Horigome et al. arXiv:2207.10378

Talk by

A new universal feature in CDM halos in cosmological N-body simulations Enomoto, Nishimichi & Taruya ('23) arXiv:2302.01531

A new universal feature in CDM halos in cosmological N-body simulations Enomoto, Nishimichi & Taruya ('23) arXiv:2302.01531

Constraining primordial perturbation

Ando, Hiroshima, Ishiwata, arXiv:2207.05747

- Power spectrum at small scales is hardly constrained
- "Peaked" power spectrum will make a characteristic shape of the subhalo mass function
- Models can be constrained with small-scale measurements of satellite galaxies, stellar streams, etc.

K. Ishiwata

Constraining primordial perturbation

Hiroshima (A02)

Ando, Hiroshima, Ishiwata, arXiv:2207.05747

- Power spectrum at small scales is hardly constrained
- "Peaked" power spectrum will make a characteristic shape of the subhalo mass function
- Models can be constrained with small-scale measurements of satellite galaxies, stellar streams, etc.

K. Ishiwata

Primordial perturbation: numerical simulations

Nishimichi, Ando (**CO2**) Hiroshima (A02) & Ishiwata

Numerical simulations clearly show differences in the **abundance of**

substructures, confirming the prediction of the semi-analytic model

output. Sman Scale Structure

I.)

Release of public codes (Ando et al.)

 Galaxies and dark matter structure classification (Inoue, Okamoto et al.)

SIDM modeling cosmological (Shirasaki, Horigo

- Numerical simulations of WDM halos and subhalos (Okamoto, Inoue et al.)
- Developing semi-analytical models and constraints from satellite number counts (Ando et al.)

- Tight constraints using stellar motion in ultrafaint dwarf galaxies (Dalal)
- Analytical models of core-halo structure (Taruya)

A semi-analytic model of DM subhaloes with self-interactions

Shirasaki, Okamoto, Ando, arXiv:2205.09920

- Develop the model by putting it all together
 - Gravothermal fluid model to predict a core formation in a self-interacting halo
 - CDM-like tidal stripping to remove the density at a halo boundary
 - Mass loss rate motivated by CDM sims
- Compare our model with the ideal N-body sims
- Comparison with comological N-body results ongoing (Shirasaki, Horigome, Ishiyama et al.)

A semi-analytic model of DM subhaloes with self-interactions

Shirasaki, Okamoto, Ando, arXiv:2205.09920

- Develop the model by putting it all together
 - Gravothermal fluid model to predict a core formation in a self-interacting halo
 - CDM-like tidal stripping to remove the density at a halo boundary
 - Mass loss rate motivated by CDM sims
- Compare our model with the ideal N-body sims
- Comparison with comological N-body results ongoing (Shirasaki, Horigome, Ishiyama et al.)

output. Sman Scale Structure

Release of public codes (Ando et al.)

 Galaxies and dark matter structure classification (Inoue, Okamoto et al.)

Primordial b		

SIDM modeling cosmological (Shirasaki, Horigo pto, Nishimichi)

I.)

os falling aki,

SIDM

- Numerical simulations of WDM halos and subhalos (Okamoto, Inoue et al.)
- Developing semi-analytical models and constraints from satellite number counts (Ando et al.)

- Tight constraints using stellar motion in ultrafaint dwarf galaxies (Dalal)
- Analytical models of core-halo structure (Taruya)

Core-halo structure of fuzzy dark matter

Analytical understanding of

Early numerical works suggest $r_{\text{soliton}} \propto M_{\text{halo}}^{-1/3} \& M_{\text{soliton}} \propto M_{\text{halo}}^{1/3}$

 \rightarrow constraining the FDM mass

Caution !! results are still under debate (e.g., Chan et al. '22)

Taruya & Saga, arXiv:2208.006562

High-density flat core of fuzzy dark matter (FDM) at the center of halos = *soliton*

(Schive et al. '14)

Solving the Schrödinger-Poisson eq. analytically,

Soliton core-halo relations of FDM change with the halo concentration parameter $c_{\rm vir}(M_{\rm halo})$, leading generically to non power-law behaviors having a large scatter

Core-halo structure of fuzzy dark matter

Analytical understanding of

Early numerical works suggest $r_{\text{soliton}} \propto M_{\text{halo}}^{-1/3} \& M_{\text{soliton}} \propto M_{\text{halo}}^{1/3}$

 \rightarrow constraining the FDM mass

Caution !! results are still under debate (e.g., Chan et al. '22)

Taruya & Saga, arXiv:2208.006562

High-density flat core of fuzzy dark matter (FDM) at the center of halos = *soliton*

(Schive et al. '14)

Solving the Schrödinger-Poisson eq. analytically,

Soliton core-halo relations of FDM change with the halo concentration parameter $c_{\rm vir}(M_{\rm halo})$, leading generically to non power-law behaviors having a large scatter

Output. oman scale structure

Release of public codes (Ando et al.)

 Galaxies and dark matter structure classification (Inoue, Okamoto et al.)

Primordial b		

SIDM modeling cosmological (Shirasaki, Horigo pto, Nishimichi)

I.)

os falling aki,

SIDM

- Numerical simulations of WDM halos and subhalos (Okamoto, Inoue et al.)
- Developing semi-analytical models and constraints from satellite number counts (Ando et al.)

- Tight constraints using stellar motion in ultrafaint dwarf galaxies (Dalal)
- Analytical models of core-halo structure (Taruya)

