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Goals: Small scale structure
• Cusps in 

density 
profiles


• Very many 
small 
(sub)structures

CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel
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et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel
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et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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FDM

• Release of public codes (Ando et al.)


• Dwarf galaxies (Horigome et al.) 

• Galaxies and dark matter structure 
classification (Inoue, Okamoto et al.)


• Phase-space structure (Enomoto, 
Nishimichi, Taruya) 

• Primordial power (Hiroshima, Nishimichi)

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos falling 
onto the SIDM halo (Shirasaki, 
Okamoto et al.) 

• SIDM modeling against 
cosmological simulations 
(Shirasaki, Horigome et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal) 

• Analytical models of core-halo  
structure (Taruya)
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel
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et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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FDM

• Release of public codes (Ando et al.)


• Dwarf galaxies (Horigome et al.) 

• Galaxies and dark matter structure 
classification (Inoue, Okamoto et al.)


• Phase-space structure (Enomoto, 
Nishimichi, Taruya) 

• Primordial power (Hiroshima, Nishimichi)

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos falling 
onto the SIDM halo (Shirasaki, 
Okamoto et al.) 

• SIDM modeling against 
cosmological simulations 
(Shirasaki, Horigome et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal) 

• Analytical models of core-halo  
structure (Taruya)
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Dark matter density profile estimation with 
cosmological models

● Dark matter density profile of astronomical objects (dSph, MW) is important to
study the nature of dark matter (mass, cross section, self-interaction)

● Cosmological models are useful to estimate these profiles by using stellar data
○ Satellire prior: prior on stuructural parameters of dSph dark matter profiles 

based on the extended Press-Schechter formalism
○ SHMR prior: empirical relation between stellar and dark matter mass
○ SIDM profile model: gravothermal fluid model calibrated by N-body simulation

Horigome et al. 
arXiv:2207.10378
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Figure 2. Stacked radial density profiles of N -body particles with even number of apocenter passages, ranging from p = 4 to
40. The four mass bins are displayed in the upper three and the lower left panel for S, M, L and XL, respectively. Additionally,
the lower middle and right panels show the results obtained from 460 halos in the mass range [4.1011, 2.30⇥1012]h�1M�, which
are further divided into the two subsamples based on the concentration parameter cvir and accretion rate �dyn, respectively (see
text in detail). In each panel, the fitted results with Equation (1) are depicted as solid lines.

Figure 3. Dependence of the characteristic density A
(upper) and scale S (lower) on the number of apocenter pas-
sages, p, as determined by fitting to Equation (1) in di↵erent
symbols four mass bins (see legend). The thin solid curves
represent the fitting formulae, Eqs. (2) and (3). For compar-
ison, predictions of the Fillmore-Goldreich self-similar solu-
tions are also shown, for specific values of the parameter ✏
(1/15, 1/6 and 1). In plotting these predictions, we identify
the position of radial caustics in the self-similar solutions
with the characteristic scale S(p), and derive A(p) by equat-
ing the masses contained in each stream. The shaded regions
for the predictions indicate uncertainty in identifying S(p)
with the position of the p-th or (p + 1)-th radial caustics of
the self-similar solutions.

log[M(t� tdyn)]}/{log[a(t)]� log[a(t� tdyn)]} with tdyn

being the dynamical time estimated from halo masses

(Diemer 2017)4. We divide the halos into two halves,
one with high values of these indicators and the other
with low values.
The middle bottom (right bottom) panel of Figure 2

depicts the results for two subsamples having low and
high values of cvir (�dyn), represented by red and black
colors, respectively. Again, a good agreement between
the double power-law function and measured profiles is
observed over a wide range of p. A close look at each
stream profile reveals that halos with high concentra-
tion or low accretion-rate tend to have a large amplitude
A(p) and a large characteristic scale S(p). These trends
are particularly evident for larger p, suggesting that the
universal double power-law feature is established in a
self-regulated manner during the orbital motion in the
multi-stream region, where the diversity of mass accre-
tion and merger histories tend to be erased and only be
imprinted in A(p) and S(p).
In order to gain a deeper understanding of the results

obtained in this Letter from a dynamical viewpoint, it
would be beneficial to compare them with self-similar so-
lutions. While self-similar solutions are only valid in the
Einstein-de Sitter universe, the secondary infall model
of Bertschinger (1985) has been shown to reproduce the
pseudo phase-space density of Q(r) / r�1.875 found in

4 We use the virial mass, Mvir, to measure �dyn, whereas Diemer
(2017) uses M200m.
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Adhikari et al. 2014; More et al. 2015). Motivated by
these findings, Sugiura et al. (2020) developed a method
using an extension of the SPARTA algorithm in Diemer
(2017) to reveal the multi-stream nature of halos at the
outer regions and they found that about 30% of halos are
well-described by the self-similar solution of Fillmore &
Goldreich (1984). In this Letter, by substantially refin-
ing their analysis based on high-resolution simulations
with finely sampled snapshots out to an early halo for-
mation, we are able to unveil the innermost parts of the
multi-stream region, where we find that halos exhibit a
universal feature in each multi-stream distribution.

2. METHOD

We analyze cosmological N -body simulations per-
formed in a flat ⇤CDM cosmology, which is consis-
tent with recent observations of cosmic microwave back-
ground radiation (Planck Collaboration et al. 2016). We
mainly analyze the simulation that follows the move-
ments of 5003 particles in a comoving box with a side
length of 41h�1Mpc using the Tree Particle-Mesh code
Ginkaku (Nishimichi, Tanaka & Yoshikawa, in preper-
ation). We employ a softening length of 4.1h�1kpc,
which we denote by rLR in what follows. The snap-
shots of the particles are saved at 1, 001 redshifts, evenly
spaced between z = 0 and 5, providing a dense sam-
pling to accurately determine the number of apocenter
passages (denoted by p in what follows) up to ⇠ 50, fol-
lowing the method of Sugiura et al. (2020) with minor
modifications.
We first select relaxed halos from those identified by

Rockstar (Behroozi et al. 2013) at z = 0, by impos-
ing a cut in the spin parameter and the o↵set between
the center of mass and the density peak (Klypin et al.
2016). We also discard subhalos according to the con-
sistency between the exact spherical-overdensity mass
and that listed in the Rockstar catalog. We then trace
the main progenitor by following the particles within
the virial radius back in time, updating the center and
the list of member particles using the shrinking-sphere
method at each snapshot until we reach the first snap-
shot at z = 5 or the number of member particles falls
below 1, 000. Our final halo trajectories are defined as
the center of mass of the 1, 000 fixed member particles,
which are closest in phase space to the center of the
main progenitor at the highest redshift to which we can
trace the progenitor with at least 1, 000 particles. We
next follow forward in time the center of mass of these
fixed particles to obtain a smooth trajectory robust to
merger events. We monitor the velocities and positions
of all surrounding particles that are within 2.5Rvir at
z = 0 relative to the center of the progenitor. We define

Figure 1. Radial density profile (upper) and phase-space
distribution (lower) of a halo withMvir = 1.49⇥1014 h�1M�.
The upper panel shows the decomposition of the total den-
sity profile (highest line) into the contributions from N -body
particles with di↵erent numbers of apocenter passages, rep-
resented by colors ranging from p = 1 (dark blue) to p = 50
(dark red) . The lower panel displays the distribution of in-
dividual particles, with the same color coding. The infalling
component, p = 0, is depicted in gray.

and count the apocenter passage for each particle when
the relative velocity changes from outgoing to infalling
and the relative position has orbited at least 90� from
the previous apocenter passage (Sugiura et al. 2020).
These specific choices are found to be robust for the de-
termination of the number of apocenter passages up to
⇠ 50.
In Fig. 1, we present the radial density profile and

phase-space distribution of a representative halo with
mass Mvir = 1.49 ⇥ 1014 h�1 M�, color-coded by the
number of apocenter passages, p. It is apparent that par-
ticles with a high value of p tend to be concentrated at
smaller radii, leading to an increase in density and a re-
duction in velocity dispersion, resulting in an onion-like
multi-stream structure in the phase-space distribution.
On the other hand, the density profiles exhibit similar
features, with the inner and outer slopes converging to a
specific value regardless of p. In the following sections,
we will further analyze this behavior for halos with dif-
ferent properties.
In order to study the convergence, we have conducted

a higher-resolution simulation with 2, 0003 particles with
an identical initial Gaussian random field. However,
storing as many as & 1, 000 snapshots from this sim-
ulation requires a significant amount of disk space, and
an accurate apocenter count would be costly. Therefore,
we only use this run to verify the density profile at z = 0.
In the following discussion, we refer to this simulation

Radial phase space
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•(possibly) linked to other universal features
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Figure 2. Stacked radial density profiles of N -body particles with even number of apocenter passages, ranging from p = 4 to
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are further divided into the two subsamples based on the concentration parameter cvir and accretion rate �dyn, respectively (see
text in detail). In each panel, the fitted results with Equation (1) are depicted as solid lines.

Figure 3. Dependence of the characteristic density A
(upper) and scale S (lower) on the number of apocenter pas-
sages, p, as determined by fitting to Equation (1) in di↵erent
symbols four mass bins (see legend). The thin solid curves
represent the fitting formulae, Eqs. (2) and (3). For compar-
ison, predictions of the Fillmore-Goldreich self-similar solu-
tions are also shown, for specific values of the parameter ✏
(1/15, 1/6 and 1). In plotting these predictions, we identify
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are particularly evident for larger p, suggesting that the
universal double power-law feature is established in a
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multi-stream region, where the diversity of mass accre-
tion and merger histories tend to be erased and only be
imprinted in A(p) and S(p).
In order to gain a deeper understanding of the results
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Adhikari et al. 2014; More et al. 2015). Motivated by
these findings, Sugiura et al. (2020) developed a method
using an extension of the SPARTA algorithm in Diemer
(2017) to reveal the multi-stream nature of halos at the
outer regions and they found that about 30% of halos are
well-described by the self-similar solution of Fillmore &
Goldreich (1984). In this Letter, by substantially refin-
ing their analysis based on high-resolution simulations
with finely sampled snapshots out to an early halo for-
mation, we are able to unveil the innermost parts of the
multi-stream region, where we find that halos exhibit a
universal feature in each multi-stream distribution.

2. METHOD

We analyze cosmological N -body simulations per-
formed in a flat ⇤CDM cosmology, which is consis-
tent with recent observations of cosmic microwave back-
ground radiation (Planck Collaboration et al. 2016). We
mainly analyze the simulation that follows the move-
ments of 5003 particles in a comoving box with a side
length of 41h�1Mpc using the Tree Particle-Mesh code
Ginkaku (Nishimichi, Tanaka & Yoshikawa, in preper-
ation). We employ a softening length of 4.1h�1kpc,
which we denote by rLR in what follows. The snap-
shots of the particles are saved at 1, 001 redshifts, evenly
spaced between z = 0 and 5, providing a dense sam-
pling to accurately determine the number of apocenter
passages (denoted by p in what follows) up to ⇠ 50, fol-
lowing the method of Sugiura et al. (2020) with minor
modifications.
We first select relaxed halos from those identified by

Rockstar (Behroozi et al. 2013) at z = 0, by impos-
ing a cut in the spin parameter and the o↵set between
the center of mass and the density peak (Klypin et al.
2016). We also discard subhalos according to the con-
sistency between the exact spherical-overdensity mass
and that listed in the Rockstar catalog. We then trace
the main progenitor by following the particles within
the virial radius back in time, updating the center and
the list of member particles using the shrinking-sphere
method at each snapshot until we reach the first snap-
shot at z = 5 or the number of member particles falls
below 1, 000. Our final halo trajectories are defined as
the center of mass of the 1, 000 fixed member particles,
which are closest in phase space to the center of the
main progenitor at the highest redshift to which we can
trace the progenitor with at least 1, 000 particles. We
next follow forward in time the center of mass of these
fixed particles to obtain a smooth trajectory robust to
merger events. We monitor the velocities and positions
of all surrounding particles that are within 2.5Rvir at
z = 0 relative to the center of the progenitor. We define

Figure 1. Radial density profile (upper) and phase-space
distribution (lower) of a halo withMvir = 1.49⇥1014 h�1M�.
The upper panel shows the decomposition of the total den-
sity profile (highest line) into the contributions from N -body
particles with di↵erent numbers of apocenter passages, rep-
resented by colors ranging from p = 1 (dark blue) to p = 50
(dark red) . The lower panel displays the distribution of in-
dividual particles, with the same color coding. The infalling
component, p = 0, is depicted in gray.

and count the apocenter passage for each particle when
the relative velocity changes from outgoing to infalling
and the relative position has orbited at least 90� from
the previous apocenter passage (Sugiura et al. 2020).
These specific choices are found to be robust for the de-
termination of the number of apocenter passages up to
⇠ 50.
In Fig. 1, we present the radial density profile and

phase-space distribution of a representative halo with
mass Mvir = 1.49 ⇥ 1014 h�1 M�, color-coded by the
number of apocenter passages, p. It is apparent that par-
ticles with a high value of p tend to be concentrated at
smaller radii, leading to an increase in density and a re-
duction in velocity dispersion, resulting in an onion-like
multi-stream structure in the phase-space distribution.
On the other hand, the density profiles exhibit similar
features, with the inner and outer slopes converging to a
specific value regardless of p. In the following sections,
we will further analyze this behavior for halos with dif-
ferent properties.
In order to study the convergence, we have conducted

a higher-resolution simulation with 2, 0003 particles with
an identical initial Gaussian random field. However,
storing as many as & 1, 000 snapshots from this sim-
ulation requires a significant amount of disk space, and
an accurate apocenter count would be costly. Therefore,
we only use this run to verify the density profile at z = 0.
In the following discussion, we refer to this simulation

Radial phase space
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Constraining primordial perturbation

• Power spectrum at small 
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will make a characteristic 
shape of the subhalo mass 
function 
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FIG. 1. Primordial curvature perturbation PR as function of wavenumber. kb = 1.0 ⇥ 102 Mpc�1h (left), 1.0 ⇥ 104 Mpc�1h
(center), and 1.0 ⇥ 106 Mpc�1h (right). Each line corresponds to A = 2.5 ⇥ 10�3, 1.6 ⇥ 10�4, 1.0 ⇥ 10�5, 6.3 ⇥ 10�7, and
4.0⇥ 10�8 from top to bottom. As a reference, PCMB

R is shown as ‘CMB’.

an additional bump [NH: on top of the curvature power spectrum corresponding to the CMB]

PR = P
CMB
R + P

bump
R , (II.1)

where

P
CMB
R (k) = As

✓
k

k⇤

◆ns�1

, (II.2)

P
bump
R (k; kb) =

(
(A� P

CMB
R (kb))

⇣
k
kb

⌘nb

k  kb

0 k > kb

. (II.3)

Here we have introduced three parameters, A, kb, and nb. In Ref. [16] the steepest spectral index is nb = 4 in single-
field inflation. On the other hand, Ref. [17] claims that the spectral index can be as large as 8 after encountering a dip
in the amplitude and then the amplitude reaches to a peak with the index less than 4. In our study we adopt nb = 4
and take A and kb as free parameters. We plot several examples of the primordial curvature perturbation in Fig. 1.

From the curvature perturbation, the variance in the comoving scale R is given by

�
2(M) =

Z
d ln k

k
3

2⇡2
P (k)W 2(kR) , (II.4)

where P (k) is the power spectrum calculated from PR and W (kR) is the window function and we adopt the sharp-k
window, W (kR) = ⇥(1� kR), where ⇥ is the Heaviside step function. This is because for the power spectrum that
has a steep cuto↵, it is shown in Ref. [18] that the sharp-k window gives a good agreement with the simulation. The
mass scale M is given as M = (4⇡/3)(Rc)3⇢m where ⇢m = ⌦m⇢c (⇢c is the critical density) and a parameter c = 2.7
is determined by comparing with the simulation [18].

Fig. 2 shows the result of �(M) for various values of kb and A. It is seen that the bump with A & 10�6 significantly
a↵ects on the variance. �(M) is enhanced below a scale, which is, for instance, (4⇡/3)(c/kb)3⇢m ⇠ 107 M� and 10M�
for kb = 102 Mpc�1

h and 104 Mpc�1
h, respectively. The enhancement scale on M gets smaller as kb becomes larger.

The variance becomes almost constant for A & 10�6. This is because the bump contributes dominantly in the integral
below the scale kb. As we will see in the next subsections, the behavior of �(M) a↵ects the merger history of both
the host halos and subhalos.

B. The host halo mass evolution

The enhancement on the variance of the curvature perturbation due to the bump can change the evolution of the
halo mass in the matter dominant era. To see this we evaluate the halo mass based on the extended Press-Schechter
(EPS) formalism [20]. Here we briefly summarize the formalism.

The collapse to form the halos is characterized by two quantities:

�(z) = �c/D(z) , �
2(M) ⌘ S(M) , (II.5)

Ando, Hiroshima, Ishiwata, arXiv:2207.05747
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FIG. 5. Cumulative maximum circular velocity function. Tidal models and the parameters are the same as Fig. 4.

Making a comprehensive analysis on the bump model, we give color maps of the number count of the subhalos
Nsh (Vmax > 4 km/s) on (A, kb) plane in Fig. 6 (left panels). In the figure, we also plot the constraint from the
µ-distortion given in Ref. [16]. We found that the cumulative number of subhalo of which maximum circular velocity
is larger than 4 km/s is suppressed in the region A & 10�6 and kb . 102 Mpc�1

h. It is smaller than the observed
value so that the parameter region is excluded. As expected from the results of the mass function, we see that the
number of subhalos satisfying the condition of the maximum circular velocity and the resultant exclusion region does
not depend on the tidal stripping model. Therefore, it is concluded that the bound is most conservative and robust.

B. Annihilation boost factor

Finally we discuss the annihilation boost factor due to the substructure in the host halo. The enhancement of the
boost factor would give rise to a large enhancement of the pair-annihilation signals of dark matter. We define the
boost factor from the subhalo and host halo as

B ⌘ J
tot
sh /Jh , (III.17)
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We investigate the primordial curvature perturbation by the observation of dark matter sub-
structure. Assuming a bump in the spectrum of the curvature perturbation in the wavenumber of
k > 1 Mpc�1, we track the evolution of the host halo and subhalos in a semi-analytic way. Taking
into account possible uncertainties in the evaluation of the tidal stripping e↵ect on the subhalo
growth, we find a new robust bound on the curvature perturbation with a bump from the number
of observed dwarf spheroidal galaxies in our Galaxy and the observations of the stellar stream. The
upper limit on the amplitude of the bump is O

�
10�7

�
for k ⇠ 103 Mpc�1. Furthermore we find the

boost factor, which is crucial for the indirect detection of dark matter signals, is up to O
�
104

�
due

to the bump that is allowed in the current observational bounds.

Introduction: The observation of the cosmic microwave
background (CMB) radiation strongly supports inflation
at the early stage of the universe. The CMB observa-
tion constrains the amplitude As and the spectral in-
dex ns of the scalar perturbation as As = (2.099 ±

0.029)⇥10�9 and ns = 0.9649±0.0042 at the pivot scale
k⇤ = 0.05 Mpc�1 [1]. At a smaller scale, on the other
hand, the constraint on the curvature perturbation is re-
laxed. For instance, the amplitude for the wavenumber
of k > O(1) Mpc�1 is constrained by µ- and y-type dis-
tortion in the CMB observation [2, 3], the overproduction
of the primordial black holes (PBHs) [4], density profile
of ultracompact minihalos [5, 6], and the free-free emis-
sion in the Planck foreground analysis [7]. Despite the
constraints, the scalar amplitude in the small scale can
be much larger than O

�
10�9

�
. In this letter, we point

out that the curvature perturbation in such a small scale
gives impact on the evolution of the hierarchical struc-
tures of galaxies, which is traced by dark matter halos of
the Universe.

Dark matter plays a crucial role in the structure for-
mation; the quantum fluctuation produced by inflation
seeds the density fluctuation, which grows in the gravi-
tational potential of dark matter. Therefore the imprint
of the small scale perturbation during the inflation is ex-
pected to remain in the current structure of dark matter
halos. Subhalos, which reside in larger-scale halos, are
especially promising objects to reveal the nature of dark
matter; dwarf spheroidal galaxies (dSphs) can form inside
subhalos and they have been found and observed inten-
sively these days in the prospects to detect dark matter
annihilation signals [8–10].

In this paper we study the cosmological consequences
of the primordial curvature perturbation in the small
scale. Assuming an additional bump in the curvature
perturbation, we investigate the subhalo evolution by ex-
tending the SASHIMI package, theoretically-motivated

FIG. 1. Excluded region on the primordial curvature per-
turbation. The tidal model (a) is adopted. Upper regions
separated by lines are excluded. “Satellite counts” (orange,
dashed) and “Stellar stream ” (red, dashed) corresponds to
the limits by the observed number of dSphs and the observa-
tion of the stellar stream, respectively. See Eqs. (7) and (8).
As a reference, the constraint due to µ-distortion is shown as
“µ-distortion”, which is given in Ref. [4]. Shaded region on
the left is disfavored from the Lyman-↵ observations [11].

model for the tidal stripping process calibrated by the
N -body simulation [12, 13].1 We give a new conser-
vative and robust bound on the curvature perturba-
tion by using the observed number of the dSphs in the
Galactic halo [14, 15] and the observations of the stellar
stream [16, 17]. Our main result is shown in Fig. 1. Addi-

1 https://github.com/shinichiroando/sashimi-c

N. Hiroshima K. Ishiwata



Constraining primordial perturbation

• Power spectrum at small 
scales is hardly constrained


• “Peaked” power spectrum 
will make a characteristic 
shape of the subhalo mass 
function 


• Models can be constrained 
with small-scale 
measurements of satellite 
galaxies, stellar streams, etc.
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FIG. 1. Primordial curvature perturbation PR as function of wavenumber. kb = 1.0 ⇥ 102 Mpc�1h (left), 1.0 ⇥ 104 Mpc�1h
(center), and 1.0 ⇥ 106 Mpc�1h (right). Each line corresponds to A = 2.5 ⇥ 10�3, 1.6 ⇥ 10�4, 1.0 ⇥ 10�5, 6.3 ⇥ 10�7, and
4.0⇥ 10�8 from top to bottom. As a reference, PCMB

R is shown as ‘CMB’.

an additional bump [NH: on top of the curvature power spectrum corresponding to the CMB]

PR = P
CMB
R + P

bump
R , (II.1)

where

P
CMB
R (k) = As

✓
k

k⇤

◆ns�1

, (II.2)

P
bump
R (k; kb) =

(
(A� P

CMB
R (kb))

⇣
k
kb

⌘nb

k  kb

0 k > kb

. (II.3)

Here we have introduced three parameters, A, kb, and nb. In Ref. [16] the steepest spectral index is nb = 4 in single-
field inflation. On the other hand, Ref. [17] claims that the spectral index can be as large as 8 after encountering a dip
in the amplitude and then the amplitude reaches to a peak with the index less than 4. In our study we adopt nb = 4
and take A and kb as free parameters. We plot several examples of the primordial curvature perturbation in Fig. 1.

From the curvature perturbation, the variance in the comoving scale R is given by

�
2(M) =

Z
d ln k

k
3

2⇡2
P (k)W 2(kR) , (II.4)

where P (k) is the power spectrum calculated from PR and W (kR) is the window function and we adopt the sharp-k
window, W (kR) = ⇥(1� kR), where ⇥ is the Heaviside step function. This is because for the power spectrum that
has a steep cuto↵, it is shown in Ref. [18] that the sharp-k window gives a good agreement with the simulation. The
mass scale M is given as M = (4⇡/3)(Rc)3⇢m where ⇢m = ⌦m⇢c (⇢c is the critical density) and a parameter c = 2.7
is determined by comparing with the simulation [18].

Fig. 2 shows the result of �(M) for various values of kb and A. It is seen that the bump with A & 10�6 significantly
a↵ects on the variance. �(M) is enhanced below a scale, which is, for instance, (4⇡/3)(c/kb)3⇢m ⇠ 107 M� and 10M�
for kb = 102 Mpc�1

h and 104 Mpc�1
h, respectively. The enhancement scale on M gets smaller as kb becomes larger.

The variance becomes almost constant for A & 10�6. This is because the bump contributes dominantly in the integral
below the scale kb. As we will see in the next subsections, the behavior of �(M) a↵ects the merger history of both
the host halos and subhalos.

B. The host halo mass evolution

The enhancement on the variance of the curvature perturbation due to the bump can change the evolution of the
halo mass in the matter dominant era. To see this we evaluate the halo mass based on the extended Press-Schechter
(EPS) formalism [20]. Here we briefly summarize the formalism.

The collapse to form the halos is characterized by two quantities:

�(z) = �c/D(z) , �
2(M) ⌘ S(M) , (II.5)

Ando, Hiroshima, Ishiwata, arXiv:2207.05747
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FIG. 5. Cumulative maximum circular velocity function. Tidal models and the parameters are the same as Fig. 4.

Making a comprehensive analysis on the bump model, we give color maps of the number count of the subhalos
Nsh (Vmax > 4 km/s) on (A, kb) plane in Fig. 6 (left panels). In the figure, we also plot the constraint from the
µ-distortion given in Ref. [16]. We found that the cumulative number of subhalo of which maximum circular velocity
is larger than 4 km/s is suppressed in the region A & 10�6 and kb . 102 Mpc�1

h. It is smaller than the observed
value so that the parameter region is excluded. As expected from the results of the mass function, we see that the
number of subhalos satisfying the condition of the maximum circular velocity and the resultant exclusion region does
not depend on the tidal stripping model. Therefore, it is concluded that the bound is most conservative and robust.

B. Annihilation boost factor

Finally we discuss the annihilation boost factor due to the substructure in the host halo. The enhancement of the
boost factor would give rise to a large enhancement of the pair-annihilation signals of dark matter. We define the
boost factor from the subhalo and host halo as

B ⌘ J
tot
sh /Jh , (III.17)

7

RIKEN-iTHEMS-Report-22, UT-HET-138, KANAZAWA-22-03

Constraining primordial curvature perturbations using dark matter substructure

Shin’ichiro Ando,1, 2 Nagisa Hiroshima,3, 4 and Koji Ishiwata5

1
GRAPPA Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

2
Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583, Japan

3
Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan

4
RIKEN iTHEMS, Wako, Saitama 351-0198, Japan

5
Institute of Theoretical Physics, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan

(Dated: July 5, 2022)

We investigate the primordial curvature perturbation by the observation of dark matter sub-
structure. Assuming a bump in the spectrum of the curvature perturbation in the wavenumber of
k > 1 Mpc�1, we track the evolution of the host halo and subhalos in a semi-analytic way. Taking
into account possible uncertainties in the evaluation of the tidal stripping e↵ect on the subhalo
growth, we find a new robust bound on the curvature perturbation with a bump from the number
of observed dwarf spheroidal galaxies in our Galaxy and the observations of the stellar stream. The
upper limit on the amplitude of the bump is O

�
10�7

�
for k ⇠ 103 Mpc�1. Furthermore we find the

boost factor, which is crucial for the indirect detection of dark matter signals, is up to O
�
104

�
due

to the bump that is allowed in the current observational bounds.

Introduction: The observation of the cosmic microwave
background (CMB) radiation strongly supports inflation
at the early stage of the universe. The CMB observa-
tion constrains the amplitude As and the spectral in-
dex ns of the scalar perturbation as As = (2.099 ±

0.029)⇥10�9 and ns = 0.9649±0.0042 at the pivot scale
k⇤ = 0.05 Mpc�1 [1]. At a smaller scale, on the other
hand, the constraint on the curvature perturbation is re-
laxed. For instance, the amplitude for the wavenumber
of k > O(1) Mpc�1 is constrained by µ- and y-type dis-
tortion in the CMB observation [2, 3], the overproduction
of the primordial black holes (PBHs) [4], density profile
of ultracompact minihalos [5, 6], and the free-free emis-
sion in the Planck foreground analysis [7]. Despite the
constraints, the scalar amplitude in the small scale can
be much larger than O

�
10�9

�
. In this letter, we point

out that the curvature perturbation in such a small scale
gives impact on the evolution of the hierarchical struc-
tures of galaxies, which is traced by dark matter halos of
the Universe.

Dark matter plays a crucial role in the structure for-
mation; the quantum fluctuation produced by inflation
seeds the density fluctuation, which grows in the gravi-
tational potential of dark matter. Therefore the imprint
of the small scale perturbation during the inflation is ex-
pected to remain in the current structure of dark matter
halos. Subhalos, which reside in larger-scale halos, are
especially promising objects to reveal the nature of dark
matter; dwarf spheroidal galaxies (dSphs) can form inside
subhalos and they have been found and observed inten-
sively these days in the prospects to detect dark matter
annihilation signals [8–10].

In this paper we study the cosmological consequences
of the primordial curvature perturbation in the small
scale. Assuming an additional bump in the curvature
perturbation, we investigate the subhalo evolution by ex-
tending the SASHIMI package, theoretically-motivated

FIG. 1. Excluded region on the primordial curvature per-
turbation. The tidal model (a) is adopted. Upper regions
separated by lines are excluded. “Satellite counts” (orange,
dashed) and “Stellar stream ” (red, dashed) corresponds to
the limits by the observed number of dSphs and the observa-
tion of the stellar stream, respectively. See Eqs. (7) and (8).
As a reference, the constraint due to µ-distortion is shown as
“µ-distortion”, which is given in Ref. [4]. Shaded region on
the left is disfavored from the Lyman-↵ observations [11].

model for the tidal stripping process calibrated by the
N -body simulation [12, 13].1 We give a new conser-
vative and robust bound on the curvature perturba-
tion by using the observed number of the dSphs in the
Galactic halo [14, 15] and the observations of the stellar
stream [16, 17]. Our main result is shown in Fig. 1. Addi-

1 https://github.com/shinichiroando/sashimi-c
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Primordial perturbation: numerical simulations
Nishimichi, Ando (C02)  
Hiroshima (A02) & 
Ishiwata

� � 	� 	� 
�
� ���	����

�

�

	�

	�


�

�
��

�
	 �

��
�

��������	�� �  ��� 	���
��������	�� �  �	��� 	�	��
��������	�� �  �	�	�� 	�		�
��������	�� �  �	�		� 	�	
�
��������	�� �  �	�	
� ��

� � 	� 	� 
�
� ���	����

�

�

	�

	�


�
�
��

�
	 �

��
�

��������	�� �  ��� 	���
��������	�� �  �	��� 	�	��
��������	�� �  �	�	�� 	�		�
��������	�� �  �	�		� 	�	
�
��������	�� �  �	�	
� ��

Abump = 6.4 × 10−7 @10 hMpc−1No bump

Numerical simulations clearly show differences in the abundance of 
substructures, confirming the prediction of the semi-analytic model
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Output: Small scale structure

CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

WDM

Structure and assembly of SIDM cluster-size haloes 3

Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum

MNRAS 000, 000–000 (0000)
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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A semi-analytic model of DM subhaloes with 
self-interactions
Shirasaki, Okamoto, Ando, arXiv:2205.09920

• Develop the model by putting it all together


• Gravothermal fluid model to predict a core 
formation in a self-interacting halo


• CDM-like tidal stripping to remove the 
density at a halo boundary


• Mass loss rate motivated by CDM sims


• Compare our model with the ideal N-body sims


• Comparison with cosmological N-body results 
ongoing (Shirasaki, Horigome, Ishiyama et al.)
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Output: Small scale structure

CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum

MNRAS 000, 000–000 (0000)

SIDM

BECDM haloes 5

t = 0 t = 0.1tH

t = 0.2tH t = tH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
x 10

11

t/tH

E
[M

!
k
m

2
s−

2
]

 

 

E W Kv Kρ

Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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energy E (assuming there is no net angular momentum).
We conduct 29 runs in total with different initial conditions
of various M and E. For the sameM and E, we repeat runs
with different realizations, including different initial soliton
numbers ranging from 4 to 128, different soliton sizes, and
initial positions. Figure 3 shows one example of the soliton
collision simulations. The adaptive mesh refinement
scheme is again adopted in order to achieve sufficient
resolution everywhere; in particular, we ensure that every
soliton is well resolved with at least ∼104 cells and verify
that M and E remain conserved with at most a few percent
error in all simulations.
The resulting relaxed structures that form in these soliton

collision experiments are always found to consist of a
halo and a solitonic core [see Figs. 1 and 3(d)], similar to
the results of cosmological simulations. The core profiles
satisfy the λ scaling, and the halo profiles are close to NFW.
This result establishes that the core-halo configuration
is a generic structure of ψDM in virialized gravitational
equilibrium.
More importantly, as shown in Fig. 4, the core mass

follows the relation

M0
c ¼ αðjE0j=M0Þ1=2: ð5Þ

Here the total kinetic energy, potential energy, and mass are
defined in the primed (redshift-independent) coordinates as
E0
k≡1

2

R
j∇0ψ 0j2d3x0, E0

p≡1
2

R
jψ 0j2V 0d3x0, M0 ≡ R

jψ 0j2d3x0,
and α is a dimensionless constant close to unity. The
physical foundation of this relation can be appreciated
as follows. The right-hand side represents the halo velocity

dispersion σ0h, and on the left-hand side, the λ scaling
demands that M0

c ∼ x0−1c , the inverse soliton size.
Accordingly, Eq. (5) relates the soliton size to the halo
velocity dispersion through the uncertainty principle, where
x0cσ0h ∼ 1. This result is nontrivial in that the uncertainty
principle is originally a local relation, but here it is found to
hold nonlocally, relating a core (local) property to a halo
(global) property. The nonlocal uncertainty principle
reveals itself in Fig. 3(d). The inverse halo velocity
dispersion is manifested by the size of halo density
granules, and the fact that the halo granule size is close
to the soliton size provides another perspective to view the
finding of Eq. (5). Eigenmode decomposition of the core-
halo system can help our understanding of the detailed
physics underlying this quantum “thermalization,” and it
will be presented in a separate work [65].
We are now in a position to understand the physical

meaning of the empirical Eq. (4). In the structure formation
simulations, we verify that halos at different redshifts all
conform to Eq. (5) by taking E0 andM0 as the rescaled halo
energy (E0

h) and virial mass (M0
h). Adopting the virial

condition in the spherical collapse model jE0
hj ¼ jE0

pj=2 ∼
3M02

h =10x
0
vir and retrieving the redshift dependence then

givesMc ¼ αð3Mh=10xvirÞ1=2a−1=2. Finally, solving xvir as
a function of Mh using the definition of virial mass given
immediately after Eq. (4) yields the expected core-halo
mass relation

Mc ¼
1

4
a−1=2

!
ζðzÞ
ζð0Þ

"
1=6

!
Mh

Mmin;0

"
1=3

Mmin;0; ð6Þ

FIG. 3 (color online). Snapshots of a soliton collision simu-
lation. Panels (a)–(c) show the projected density distribution at
the initial and intermediate stages, and panel (d) shows a close-up
of the conspicuous solitonic core at the final stage. Fluctuating
density granules resulting from the quantum wave interference
appear everywhere and have a size similar to the central soliton.

FIG. 4 (color online). Scaling relation between core mass and
system specific energy in the soliton collision experiments. Error
bars represent the root-mean-square scatter of different realiza-
tions at a given specific energy bin as well as the fluctuation in
different snapshots of each run. Note that the redshift dependence
has been absorbed into the rescaled mass M0 and energy E0

(see text for details)
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FIG. 8. The soliton core-halo mass relation adopting the c-M relation for the FDM model. Incorporating the c-M relation
of Ref. [52] into the predictions shown in Fig. 6, the results of the core radius vs halo mass (left) and the core mass vs halo
mass (right) relations are plotted, together with measured results from numerical simulations, for which the median values
and dispersions are also evaluated in each halo mass bin and are plotted as large filled circles and errorbars, respectively . In
plotting the predictions, we assume, for each halo mass, the log-normal distribution of cvir, and evaluate the median and the
scatter in the core-halo relation. In each panel, the thick solid line is the median relation, while the faint and dark shaded areas
respectively show the 1� and 2� scatter arising from the scatter in cvir. Note that the median relations shown here are hardly
distinguishable from the predictions computed with the mean c-M relation. For reference, the gray dashed lines are the scaling
relations numerically found by Ref. [51].

FIG. 9. Same as Fig. 8, but the predictions adopting the c-M relation of the CDM model by Ref. [53] are shown.

with p given by 0.65. Here we used the fact that
 ̃soliton(0) = �x

2
c/(14 �). In the above, the energy eigen-

value E has to be consistently evaluated, taking the soli-
ton potential into account. Employing the perturbative
calculation familiar in quantum mechanics, this is esti-

mated to give

E1/↵ ' E
(0)
1 /↵+

⇣
⇢c

⇢s

⌘Z
dx ũ

(0)
1 (x) e soliton(x) ũ

(0)
1 (x),

(59)

where the quantity E
(0)
1 stands for the unperturbed en-
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energy E (assuming there is no net angular momentum).
We conduct 29 runs in total with different initial conditions
of various M and E. For the sameM and E, we repeat runs
with different realizations, including different initial soliton
numbers ranging from 4 to 128, different soliton sizes, and
initial positions. Figure 3 shows one example of the soliton
collision simulations. The adaptive mesh refinement
scheme is again adopted in order to achieve sufficient
resolution everywhere; in particular, we ensure that every
soliton is well resolved with at least ∼104 cells and verify
that M and E remain conserved with at most a few percent
error in all simulations.
The resulting relaxed structures that form in these soliton

collision experiments are always found to consist of a
halo and a solitonic core [see Figs. 1 and 3(d)], similar to
the results of cosmological simulations. The core profiles
satisfy the λ scaling, and the halo profiles are close to NFW.
This result establishes that the core-halo configuration
is a generic structure of ψDM in virialized gravitational
equilibrium.
More importantly, as shown in Fig. 4, the core mass

follows the relation

M0
c ¼ αðjE0j=M0Þ1=2: ð5Þ

Here the total kinetic energy, potential energy, and mass are
defined in the primed (redshift-independent) coordinates as
E0
k≡1

2
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j∇0ψ 0j2d3x0, E0

p≡1
2

R
jψ 0j2V 0d3x0, M0 ≡ R

jψ 0j2d3x0,
and α is a dimensionless constant close to unity. The
physical foundation of this relation can be appreciated
as follows. The right-hand side represents the halo velocity

dispersion σ0h, and on the left-hand side, the λ scaling
demands that M0

c ∼ x0−1c , the inverse soliton size.
Accordingly, Eq. (5) relates the soliton size to the halo
velocity dispersion through the uncertainty principle, where
x0cσ0h ∼ 1. This result is nontrivial in that the uncertainty
principle is originally a local relation, but here it is found to
hold nonlocally, relating a core (local) property to a halo
(global) property. The nonlocal uncertainty principle
reveals itself in Fig. 3(d). The inverse halo velocity
dispersion is manifested by the size of halo density
granules, and the fact that the halo granule size is close
to the soliton size provides another perspective to view the
finding of Eq. (5). Eigenmode decomposition of the core-
halo system can help our understanding of the detailed
physics underlying this quantum “thermalization,” and it
will be presented in a separate work [65].
We are now in a position to understand the physical

meaning of the empirical Eq. (4). In the structure formation
simulations, we verify that halos at different redshifts all
conform to Eq. (5) by taking E0 andM0 as the rescaled halo
energy (E0

h) and virial mass (M0
h). Adopting the virial

condition in the spherical collapse model jE0
hj ¼ jE0

pj=2 ∼
3M02

h =10x
0
vir and retrieving the redshift dependence then

givesMc ¼ αð3Mh=10xvirÞ1=2a−1=2. Finally, solving xvir as
a function of Mh using the definition of virial mass given
immediately after Eq. (4) yields the expected core-halo
mass relation

Mc ¼
1
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FIG. 3 (color online). Snapshots of a soliton collision simu-
lation. Panels (a)–(c) show the projected density distribution at
the initial and intermediate stages, and panel (d) shows a close-up
of the conspicuous solitonic core at the final stage. Fluctuating
density granules resulting from the quantum wave interference
appear everywhere and have a size similar to the central soliton.

FIG. 4 (color online). Scaling relation between core mass and
system specific energy in the soliton collision experiments. Error
bars represent the root-mean-square scatter of different realiza-
tions at a given specific energy bin as well as the fluctuation in
different snapshots of each run. Note that the redshift dependence
has been absorbed into the rescaled mass M0 and energy E0

(see text for details)
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FIG. 8. The soliton core-halo mass relation adopting the c-M relation for the FDM model. Incorporating the c-M relation
of Ref. [52] into the predictions shown in Fig. 6, the results of the core radius vs halo mass (left) and the core mass vs halo
mass (right) relations are plotted, together with measured results from numerical simulations, for which the median values
and dispersions are also evaluated in each halo mass bin and are plotted as large filled circles and errorbars, respectively . In
plotting the predictions, we assume, for each halo mass, the log-normal distribution of cvir, and evaluate the median and the
scatter in the core-halo relation. In each panel, the thick solid line is the median relation, while the faint and dark shaded areas
respectively show the 1� and 2� scatter arising from the scatter in cvir. Note that the median relations shown here are hardly
distinguishable from the predictions computed with the mean c-M relation. For reference, the gray dashed lines are the scaling
relations numerically found by Ref. [51].

FIG. 9. Same as Fig. 8, but the predictions adopting the c-M relation of the CDM model by Ref. [53] are shown.

with p given by 0.65. Here we used the fact that
 ̃soliton(0) = �x
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c/(14 �). In the above, the energy eigen-

value E has to be consistently evaluated, taking the soli-
ton potential into account. Employing the perturbative
calculation familiar in quantum mechanics, this is esti-

mated to give

E1/↵ ' E
(0)
1 /↵+

⇣
⇢c

⇢s

⌘Z
dx ũ
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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FDM

• Release of public codes (Ando et al.)


• Dwarf galaxies (Horigome et al.) 

• Galaxies and dark matter structure 
classification (Inoue, Okamoto et al.)


• Phase-space structure (Enomoto, 
Nishimichi, Taruya) 

• Primordial power (Hiroshima, Nishimichi)

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos falling 
onto the SIDM halo (Shirasaki, 
Okamoto et al.) 

• SIDM modeling against 
cosmological simulations 
(Shirasaki, Horigome et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal) 

• Analytical models of core-halo  
structure (Taruya)
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