7—9, March 2023 Symposium on "What is dark matter?" @ Kavli IPMU

Innermost structure of dark matter halos finding a clue of dark matter

Yohsuke Enomoto (Dept. Physics, Kyoto Univ.)

Takahiro Nishimichi Shohei Saga (Institut d'Astrophysique de Paris) (YITP, Kyoto Univ.)

Atsushi Taruya (YITP, Kyoto Univ.)

Its properties reflect nature of dark matter (DM)

ure & inner structures sometimes exhibit universal features \rightarrow a unique channel to access nature of DM

Cold DM (CDM)

Warm DM

Self-Interacting DM

Here, we focus on "universal" properties in CDM & FDM

Enomoto, Nishimichi & AT, arXiv:2302.01531 AT & Saga, arXiv:2208.06562 (in PRD)

Cold dark matter (CDM) halo

Baseline DM in the concordant cosmological model (ACDM)

Cuspy structure

Radial density p (Navarro, Frenk & White '96)

CDM

Pseudo-phase space density

(Taylor & Navarro '01)

A more profound & universal property as a distinct feature of CDM?

Studied extensively by N-body simulations

orofile
$$\rho(r) \propto r^{\alpha} r^{-\alpha}$$
 ($\alpha = 1 - 1.5$)

(c.f. prompt cusp of $\rho \propto r^{-3/2}$ of first halos) (Ishiyama et al. '10; Delos & White'22)

 $Q(r) \equiv \rho(r) / \{\sigma_{\rm v}(r)\}^3$ $\propto r^{-\alpha_Q} \quad (\alpha_O = 1.875)$

nature of CDM halos

- rovides a distinctive feature in CDM halos
- persion at an early time
 - Through accretion/merger processes

Onion-like structure

- Multi-stream structures with an outer sharp boundary (=Splashback radius) (e.g., Diemer & Kravtsov '14; Adhikari et al. '14)
 - A fundamental universal feature may be hidden in phase space?

Using 1,001 snapshot data of cosmological N-body simulations over z=0-5

Keep track of apocenter passage(s) for particle trajectories (Sugiura et al. '20) and count the number of <u>apocenter passages</u>, *p*, for each particle See also Diemer ('17)

 $\Lambda \text{CDM}, L_{\text{box}} = 41 \, h^{-1} \text{Mpc} \& N_{\text{dm}} = 500^3$

φ

Stacked multi-stream radial profiles Enomoto, Nishimichi & AT ('23) $[5.71, 24.2] \times 10^{11} h^{-1} M.$ $[24.2, 132] \times 10^{1} h^{-1} M_{\odot}$ p = 40p = 40p = 30p = 30p = 20p = 20p = 10 10^{-1} $M_{10} \equiv M_{\rm vir} / (10^{10} h^{-1} M_{\odot})$ -0.11910gm/M $-3.89 + 0.243 \log_{10}(M_{\odot})$ $= 2.46 - 0.0474 \log_{10}(M_{10}) + \{-2.29 - 0.0639 \log_{10}(M_{10})\} p^{1/8}$ $\log_{10}{S(p)}$

Fuzzy dark matter (FDM) halo

Flat dense core = soliton

Mass: M_c

Radius: $r_{\rm c}$

Fuzzy DM

Core-halo relations

 \rightarrow unique feature to constrain mass of fuzzy DM (e.g., Safarzadeh & Spergel '20; Hayashi & Obata '20)

However,

some contradiction as well as a diversity of their relations reported (Schwabe et al. '16, Du et al. '17, Mocz et al. '17, Nori & Baldi '21, Mina et al. '22, Chan et al. '22)

Alternative DM candidate having a ultralight mass ($\sim 10^{-22}$ eV)

found by numerical simulations of Schrödinger-Poisson (S-P) equation

Schive et al. ('14) $M_{\rm h}$: Halo mass $r_{\rm c} \propto m_{\phi}^{-1} M_{\rm h}^{-1/3} \qquad M_{\rm c} \propto m_{\phi}^{-1} M_{\rm h}^{1/3}$ m_{ϕ} : Mass of FDM

X(\= ///s] XX(==(1/5g)

soliton eigenstate $(\mathscr{E}_{1,0}/\alpha)$

Analytical approach to core-halo structure

AT & Saga ('22)

A missing factor largely changes core-halo relations, showing extra cosmological dependence

Present work

adopting the concentration-mass relation $c_{\rm vir}(M_{\rm h})$ of FDM/CDM models

Non power-law behaviors

Non-negligible amount of scatter

c.f.) recent claim by Zagorac et al. ('23) "There is no universal core-halo relationship"

Summary

To be or not to be... (non-)universal features of innermost structure of dark matter halos based on analytical & numerical study

Cold dark matter (CDM)

Enomoto, Nishimichi & AT, arXiv:2302.01531

A new remarkable feature found in multi-stream structures

Fuzzy dark matter (FDM)

A missing factor in core-halo relations found analytically

Radial multi-stream profiles $\rho_{\text{stream}}(r;p) = \frac{A(p)}{x(1+x^7)}; \quad x \equiv \frac{r}{S(p)}$ With A(p) & S(p) described by a simple fitting form

AT & Saga, arXiv:2208.06562 (in PRD)

Non power-law feature of core-halo relation dependent on <u>cosmology</u> (concentration-halo mass relation) \rightarrow no universal relation ?

