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Introduction & motivation
Probing nature of dark matter from cosmic structure formation 

Dark matter halos (DM halos) — self-gravitating bound objects

 a unique channel to access nature of DM→
universal features
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum

MNRAS 000, 000–000 (0000)
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.

c� 2017 RAS, MNRAS 000, 1–14
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Its properties re!ect nature of dark matter (DM)

substructure & inner structures sometimes exhibit

Here, we focus on “universal” 
properties in CDM & FDM
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ʲ ʢ̰ʣܭڀݚըɺํڀݚ๏ͳͲ 1©ʢ͖ͭͮʣ ʳ
ֶज़มֵʢ̖ʣʢܭըʣ ̎

ΔͨΊɺີϓϩ͜ىʹతޮ͕ͷΤωϧΪʔަ࢜ಉࢠཚΛ௨ͯ͡μʔΫϚλʔཻࢄͯ
ϑΝΠϧ͕ͳ·͞ΕɺʮίΞʯͱݺΕΔখεέʔϧͷߏ͕࡞ΒΕΔɻ͜ͷίΞͷαΠζ
μʔΫϚλʔͷࣗݾ૬࡞ޓ༻ͷ͞ڧʹґଘ͢Δɻ

• ϑΝδʔμʔΫϚλʔʢۃΊ͍ͯܰΞΫγΦϯͳͲʣɿ௨ৗΞΫγΦϯ CDMͱͯ͠ৼΔ
͏ͨΊɺߏܗͷ؍͔ΒWIMPͱ۠ผ͢Δ͜ͱͰ͖ͳ͍ɻ͔͠͠ͳ͕Βͦͷ࣭
ྔ͕ 10−22 eVͷΑ͏ʹۃʹ͍ܰ߹ɺυɾϒϩΠ͕ఱจֶతʹϚΫϩͳεέʔϧʹ
ΒΕΔɻ͜ͷΑ͏ͳީ͑ߟΒΕΔͱ࡞͕ߏͿͨΊɺྫ͑ᛙখۜՏͷத৺෦ʹಛతͳٴ
ิΛ૯ͯ͡ϑΝδʔμʔΫϚλʔʢFDMʣͱݺͿɻ

• ϒϥοΫϗʔϧʢPrimordial࢝ݪ Black Hole; PBHʣɿӉॳظʹ૬సҠͳͲͰܗ͞Ε͏
ΔPBHμʔΫϚλʔͷީิͰ͋Δ͕ɺ༷ʑͳ؍ଌత੍͔ݶΒɺಉ࣌ʹWIMPͳͲͷૉ
ଘ͢ΔՄੑ͕ٞ͞Ε͍ͯΔɻେ͖͍εέʔϧͰͷCDMڞతμʔΫϚλʔͱࢠཻ

ͷ߹ͱಉͩ͡ͱ͑ߟΒΕ͍ͯΔ͕ɺϋϩʔத৺෦ͳͲʹ͓͍ͯ PBHपΓʹWIMPΛޮ
Α߱͘ண͠ɺۃΊͯີͷ͍ߴεύΠΫͱݺΕΔߏΛ࡞Δ͜ͱ͕ࢦఠ͞Ε͍ͯΔɻɹ

冷たい 
ダークマター

暖かい 
ダークマター

自己相互作用 
ダークマター

ファジー 
ダークマター

粒子質量 
>GeV-TeV

粒子質量 
keV程度

相互作用 
反応率

粒子質量 
10-22 eV程度

• 多様な質量のハロー 
• NFWプロファイル

• 小質量ハロー消失 
• NFWプロファイル

• 多様な質量のハロー 
• プロファイルにコア

• 多様な質量のハロー 
• 量子力学的効果
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ਤ 1: ༷ʑͳμʔΫϚλʔީิཻࢠͷ߹ʹظ͞Ε
Δɺখεέʔϧʹ͓͚Δͷҧ͍ɻPBH͜͜Ͱ
͍ࣔͯ͠ͳ͍͕ɺϋϩʔத৺෦Λআ͚ CDMͱಉ༷
ͷߏΛ༗͢Δɻ

͜ΕΒͷՄੑɺ௨ৗ࠷ॳʹཧ
తʹࢦఠ͞Εͨͷͷɺͦͷॏཁੑ͕
ཱ֬͢ΔͨΊʹɺେنγϛϡ
ϨʔγϣϯΛ༻͍͔͕ͨܽ͜͢ূݕͱ
ͷͰ͖ͳ͍ͷͰ͋ͬͨɻӉͷߏ
ͳܗۜՏεέʔϧͳͲͰඇઢܗ
ਐԽΛ͢ΔͨΊɺ७ਮʹཧɾղੳత
ʹղ͘ͷ͕ෆՄʹͳΔͷ͕ݪҼͰ͋
Δɻैͬͯɺຊڀݚʹ͓͍ͯγ
ϛϡϨʔγϣϯͷ։ൃओཁͳׂΛ
୲͏͜ͱͱͳΔɻ͔͠͠ͳ͕Βɺ
γϛϡϨʔγϣϯʹ࣮ݱతʹେ͖ͳ
͕͍͔͖ͭͭ͘·ͱ͏ɻ५ͳܭ
͓ʹڥڀݚͷࠓࡢϦιʔε͕͋Δࢉ
͍ͯ͑͞ɺ͏͑ߟΔཧϓϩηεΛ
ཏతʹؚΊ্ͨͰߏܗͷڀݚΛߦ
͏͜ͱ࣮࣭ෆՄͰ͋Δɻ͞Βʹɺ
౷ܭతʹ༗ҙͳٞΛՄʹ͢ΔͨΊ
ʹɺ͜ͷΑ͏ͳγϛϡϨʔγϣϯΛ

গͳ͘ͱඦʹͬͯ܁Γฦ͞ͳͯ͘ͳΒͳ͍ɻ non-WIMPμʔΫϚλʔͷ߹ʹ
ΑΓਂࠁͰɺ֤Ϟσϧʹ͖ͭগͳ͘ͱݸͷࣗ༝ύϥϝʔλʢμʔΫϚλʔ࣭ྔɺࢄཚஅ໘ੵɺ
ʣ͕ଘ͢ࡏΔɻμʔΫϚλʔͷۃڀతཧղΛಘΔͨΊʹɺͦͷେͳଟݩ࣍ύϥϝʔλ
ۭؒͷҰҰʹ͖ͭෳͷγϛϡϨʔγϣϯΛ͢Δ͜ͱ͕ٻΊΒΕΔɻ
ͳ͓ɺཧతՌΛ࠷େ؍ʹݶଌϑΟʔυόοΫ͢Δ্ͰɺఱͷՏۜՏ͔ΒۜՏஂεέʔϧ

ʹ͓ΑͿɺߏܗΛแׅతʹཧղ͢Δ͜ͱ͍·ͩຊ࣭తͰ͋ΔɻॏྗϨϯζɾXઢ؍ଌͳͲ
͔ΒಘΒΕΔ๛ͳ؍ଌతใ͔ΒμʔΫϚλʔީิΛफ़ผ͢Δ্ͰɺີߏҎ֎ʹ
ؚΊͨɺҐஔɾ ॏྗਐԽͷಛੑͷղ໌͕ෆՄܽͰ͋Δɻ͜ͷͷղܗͷඇઢۭؒݩ࣍6
໌ֶज़తʹҙٛਂ͍͚ͩͰͳ͘ɺԤभӉؔػͷ Gaiaຊͷ JASMINEܭըͳͲɺҐஔఱ
จֶʹΑΔߴਫ਼μʔΫϚλʔ୳ࠪΛՄʹ͠ɺੈ࣍ۜՏ؍ଌσʔλ͔ΒμʔΫϚλʔͷਖ਼ମ
ղ໌ʹܾఆతͳূڌΛͨΒ͠ಘΔɻͨͩɺ࣌ݱͰɺͦ͏ͨ͠؍͔ΒڀݚΛߦͳ͍ͬͯΔά
ϧʔϓੈքతʹݶΒΕ͓ͯΓɺߴͳ౷ܭతख๏ʹͱͮ͘࠷దͳμʔΫϚλʔݕग़͋Δ͍
फ़ผΛ͢ΔͨΊͷํ๏ͷ։ൃɾߟҊࣗମɺޙࠓਐΊΔ͖՝Ͱ͋ΔɻຊΛ࢝Ίੈք֤
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CDM

Radial density pro"le

Cuspy structure

Pseudo-phase space density

ρ(r)

Q(r) ≡ ρ(r)/{σv(r)}3

∝ r−αQ

∝ r−αr ≪ rs

(α = 1 − 1.5)

(αQ = 1.875)

Cold dark matter (CDM) halo
Baseline DM in the concordant cosmological model ( CDM)Λ

(c.f. prompt cusp of  of "rst halos )ρ ∝ r−3/2

(Ishiyama et al. ’10; Delos & White’22)

(Taylor & Navarro ’01)

Studied extensively by N-body simulations

(Navarro, Frenk & White ’96)

A more profound & universal property as a distinct feature of CDM ?



Multi-stream structures

Cold nature of dark matter 

Through accretion/merger processes

Negligible velocity dispersion at an early time

(=Splashback radius)

Multi-stream nature of CDM halos

Adhikari, Dalal & Chamberlain (’14)

with an outer sharp boundary

provides a distinctive feature in CDM halos
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Figure 3. Caustics for self-similar halos [2, 7] with accretion rate s = 3. The top panel shows the
phase space diagram for spherically symmetric collapse (solid black curve) and for 3D collapse with
e = 0.05 (colormap), while the bottom panel shows the density vs. radius. The vertical line in the
bottom panel indicates the splashback radius predicted by the spherical collapse model for this value
of s. As the density profiles demonstrate, the caustic location depends mainly on accretion rate, with
little if any dependence on the initial ellipticity e. However, the caustic width does depend on e,
apparently because the shape of the splashback surface is related to the initial ellipticity.

the similarity solution for s = 3. Note that for ΩM = 1, the 1-D simulation does not exactly
match the similarity solution. This is because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in the similarity solution [15, 19, 20].
To suppress these instabilities, we follow Vogelsberger et al. [15] and soften the force law in
eq. (2.1) near r = 0. As figure 4 shows, the halo profile for ΩM = 1 is similar to the similarity
solution. The level of agreement or disagreement between the two curves illustrates the
extent to which the 1-D N-body simulations may be trusted. Note in particular that the
location of the splashback radius is similar in the two cases. The figure also shows results
for ΩM = 0.3, in the solid red curve. For comparison, the vertical dotted lines show the toy
model’s predictions for the splashback radius for these values of ΩM . Overall, we find good
agreement, demonstrating that the location of splashback does indeed depend on cosmology
and redshift.
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Onion-like structure
CDM halos exhibit

A fundamental universal feature 
may be hidden in phase space ?

(e.g., Diemer & Kravtsov ’14; Adhikari et al. ’14)



Tracing multi-stream flow with particles

Keep track of apocenter passage(s) for particle trajectories
and count the number of apocenter passages, p, for each particle

Using 1,001 snapshot data of cosmological N-body simulations over z=0~5
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,  & ΛCDM Lbox = 41 h−1Mpc Ndm = 5003

Tiling phase-space streams with p
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Adhikari et al. 2014; More et al. 2015). Motivated by
these findings, Sugiura et al. (2020) developed a method
using an extension of the SPARTA algorithm in Diemer
(2017) to reveal the multi-stream nature of halos at the
outer regions and they found that about 30% of halos are
well-described by the self-similar solution of Fillmore &
Goldreich (1984). In this Letter, by substantially refin-
ing their analysis based on high-resolution simulations
with finely sampled snapshots out to an early halo for-
mation, we are able to unveil the innermost parts of the
multi-stream region, where we find that halos exhibit a
universal feature in each multi-stream distribution.

2. METHOD

We analyze cosmological N -body simulations per-
formed in a flat ⇤CDM cosmology, which is consis-
tent with recent observations of cosmic microwave back-
ground radiation (Planck Collaboration et al. 2016). We
mainly analyze the simulation that follows the move-
ments of 5003 particles in a comoving box with a side
length of 41h�1Mpc using the Tree Particle-Mesh code
Ginkaku (Nishimichi, Tanaka & Yoshikawa, in preper-
ation). We employ a softening length of 4.1h�1kpc,
which we denote by rLR in what follows. The snap-
shots of the particles are saved at 1, 001 redshifts, evenly
spaced between z = 0 and 5, providing a dense sam-
pling to accurately determine the number of apocenter
passages (denoted by p in what follows) up to ⇠ 50, fol-
lowing the method of Sugiura et al. (2020) with minor
modifications.
We first select relaxed halos from those identified by

Rockstar (Behroozi et al. 2013) at z = 0, by impos-
ing a cut in the spin parameter and the o↵set between
the center of mass and the density peak (Klypin et al.
2016). We also discard subhalos according to the con-
sistency between the exact spherical-overdensity mass
and that listed in the Rockstar catalog. We then trace
the main progenitor by following the particles within
the virial radius back in time, updating the center and
the list of member particles using the shrinking-sphere
method at each snapshot until we reach the first snap-
shot at z = 5 or the number of member particles falls
below 1, 000. Our final halo trajectories are defined as
the center of mass of the 1, 000 fixed member particles,
which are closest in phase space to the center of the
main progenitor at the highest redshift to which we can
trace the progenitor with at least 1, 000 particles. We
next follow forward in time the center of mass of these
fixed particles to obtain a smooth trajectory robust to
merger events. We monitor the velocities and positions
of all surrounding particles that are within 2.5Rvir at
z = 0 relative to the center of the progenitor. We define

Figure 1. Radial density profile (upper) and phase-space
distribution (lower) of a halo withMvir = 1.49⇥1014 h�1M�.
The upper panel shows the decomposition of the total den-
sity profile (highest line) into the contributions from N -body
particles with di↵erent numbers of apocenter passages, rep-
resented by colors ranging from p = 1 (dark blue) to p = 50
(dark red) . The lower panel displays the distribution of in-
dividual particles, with the same color coding. The infalling
component, p = 0, is depicted in gray.

and count the apocenter passage for each particle when
the relative velocity changes from outgoing to infalling
and the relative position has orbited at least 90� from
the previous apocenter passage (Sugiura et al. 2020).
These specific choices are found to be robust for the de-
termination of the number of apocenter passages up to
⇠ 50.
In Fig. 1, we present the radial density profile and

phase-space distribution of a representative halo with
mass Mvir = 1.49 ⇥ 1014 h�1 M�, color-coded by the
number of apocenter passages, p. It is apparent that par-
ticles with a high value of p tend to be concentrated at
smaller radii, leading to an increase in density and a re-
duction in velocity dispersion, resulting in an onion-like
multi-stream structure in the phase-space distribution.
On the other hand, the density profiles exhibit similar
features, with the inner and outer slopes converging to a
specific value regardless of p. In the following sections,
we will further analyze this behavior for halos with dif-
ferent properties.
In order to study the convergence, we have conducted

a higher-resolution simulation with 2, 0003 particles with
an identical initial Gaussian random field. However,
storing as many as & 1, 000 snapshots from this sim-
ulation requires a significant amount of disk space, and
an accurate apocenter count would be costly. Therefore,
we only use this run to verify the density profile at z = 0.
In the following discussion, we refer to this simulation
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These specific choices are found to be robust for the de-
termination of the number of apocenter passages up to
⇠ 50.
In Fig. 1, we present the radial density profile and

phase-space distribution of a representative halo with
mass Mvir = 1.49 ⇥ 1014 h�1 M�, color-coded by the
number of apocenter passages, p. It is apparent that par-
ticles with a high value of p tend to be concentrated at
smaller radii, leading to an increase in density and a re-
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specific value regardless of p. In the following sections,
we will further analyze this behavior for halos with dif-
ferent properties.
In order to study the convergence, we have conducted

a higher-resolution simulation with 2, 0003 particles with
an identical initial Gaussian random field. However,
storing as many as & 1, 000 snapshots from this sim-
ulation requires a significant amount of disk space, and
an accurate apocenter count would be costly. Therefore,
we only use this run to verify the density profile at z = 0.
In the following discussion, we refer to this simulation
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Figure 2. Stacked radial density profiles of N -body particles with even number of apocenter passages, ranging from p = 4 to
40. The four mass bins are displayed in the upper three and the lower left panel for S, M, L and XL, respectively. Additionally,
the lower middle and right panels show the results obtained from 460 halos in the mass range [4.1011, 2.30⇥1012]h�1M�, which
are further divided into the two subsamples based on the concentration parameter cvir and accretion rate �dyn, respectively (see
text in detail). In each panel, the fitted results with Equation (1) are depicted as solid lines.

Figure 3. Dependence of the characteristic density A
(upper) and scale S (lower) on the number of apocenter pas-
sages, p, as determined by fitting to Equation (1) in di↵erent
symbols four mass bins (see legend). The thin solid curves
represent the fitting formulae, Eqs. (2) and (3). For compar-
ison, predictions of the Fillmore-Goldreich self-similar solu-
tions are also shown, for specific values of the parameter ✏
(1/15, 1/6 and 1). In plotting these predictions, we identify
the position of radial caustics in the self-similar solutions
with the characteristic scale S(p), and derive A(p) by equat-
ing the masses contained in each stream. The shaded regions
for the predictions indicate uncertainty in identifying S(p)
with the position of the p-th or (p + 1)-th radial caustics of
the self-similar solutions.

log[M(t� tdyn)]}/{log[a(t)]� log[a(t� tdyn)]} with tdyn

being the dynamical time estimated from halo masses

(Diemer 2017)4. We divide the halos into two halves,
one with high values of these indicators and the other
with low values.
The middle bottom (right bottom) panel of Figure 2

depicts the results for two subsamples having low and
high values of cvir (�dyn), represented by red and black
colors, respectively. Again, a good agreement between
the double power-law function and measured profiles is
observed over a wide range of p. A close look at each
stream profile reveals that halos with high concentra-
tion or low accretion-rate tend to have a large amplitude
A(p) and a large characteristic scale S(p). These trends
are particularly evident for larger p, suggesting that the
universal double power-law feature is established in a
self-regulated manner during the orbital motion in the
multi-stream region, where the diversity of mass accre-
tion and merger histories tend to be erased and only be
imprinted in A(p) and S(p).
In order to gain a deeper understanding of the results

obtained in this Letter from a dynamical viewpoint, it
would be beneficial to compare them with self-similar so-
lutions. While self-similar solutions are only valid in the
Einstein-de Sitter universe, the secondary infall model
of Bertschinger (1985) has been shown to reproduce the
pseudo phase-space density of Q(r) / r�1.875 found in

4 We use the virial mass, Mvir, to measure �dyn, whereas Diemer
(2017) uses M200m.
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Figure 4. Comparison of the total density profile between our model (
P

⇢stream) and HR (⇢HR). The upper and lower panels
respectively show the fractional di↵erence with respect to HR, i.e., (⇢ � ⇢HR)/⇢HR, and the logarithmic slope, d log ⇢/d log r.
The results for four mass bins are presented separately in each panel for scales above twice the softening length of HR, rHR.
The shaded regions indicate the estimated uncertainties in the prediction, which are propagated from the statistical error in the
stacked profile through the uncertainties in the fitting parameters. We also plot the NFW (dashed) and Einasto (dot-dashed;
Einasto (1965)) profiles, obtained by fitting HR in the range 2 rHR  r  0.9Rvir. In the upper panels, the results obtained
from a partial summation of the double power-law profile up to p = 40 are also plotted (dotted). The vertical arrows indicate
rLR, the softening length for LR.

simulations in the ⇤CDMmodel. One such solution that
can be used to describe the multi-stream flow in phase
space is the spherically symmetric solutions put forth
by Fillmore & Goldreich (1984). Under a stationary
matter accretion, this model includes the Bertschinger’s
secondary infall model as a special case. Recent work
by Sugiura et al. (2020) has made a direct comparison
of these predictions with radial multi-stream structures
obtained from simulations up to p = 5. Identifying the
position of radial caustics in self-similar solutions with
the characteristic scale of the double power-law profile
in Equation (1), it is possible to make predictions for
both A(p) and S(p).
In Figure 3, we compare the predictions of self-similar

solutions with our N -body results for three values of
the model parameter ✏, which describes the power-law
slope of initial density contrast. Note that the param-
eter ✏ is restricted to the range [0, 1], and the solution
with ✏ = 1 corresponds to Bertschinger’s secondary in-
fall model. Figure 3 shows that none of the solutions
consistently explain the trends in both A(p) and S(p),
although setting the parameter ✏ to 1/6 reproduces the
characteristic scale S(p) reasonably well. The main rea-
son for this failure is that for each stream, the Fillmore-
Goldreich solutions predict a steep inner profile with a
logarithmic slope of around �2 irrespective of the value
of ✏. One possible explanation for the shallow inner
cusps found in simulations is to introduce the non-zero
angular momentum, which can reduce the steepness of
the profile near the halo center (Nusser 2001; Zukin &
Bertschinger 2010). However, existing solutions allow
for the introduction of angular momentum in a very spe-

cific manner, and without a broad angular momentum
distribution, they fail to describe the shallow inner cusp
seen in the profile for each p.
We thus conclude that a more comprehensive theoret-

ical study is needed to fully understand the universal
features found in this Letter, taking into account the
complexities associated with mass accretion and merger
history. This may involve exploring the angular momen-
tum distribution or relaxing the symmetry assumptions
(see Ryden 1993; Lithwick & Dalal 2011, for the latter
aspect).

5. CONCLUSION

In this Letter, we have investigated the multi-stream
radial structures of dark matter halos in cosmological
N -body simulations. Our focus is on the radial distri-
bution of dark matter particles within the splashback
radius. We use the method developed by Sugiura et al.
(2020) to trace the trajectories of dark matter particles
and quantify the density profile for each stream, which
we label by p. With the help of 1, 001 snapshots between
z = 0 and 5, we are able to resolve the multi-stream
structure in phase space up to p = 40. The radial den-
sity profiles for each stream are accurately described by
a double power-law function (Equation 1), with charac-
teristic density A(p) and scale S(p) well-fitted respec-
tively to Equations (2) and (3). These results are
consistent across di↵erent sample selections based on
the concentration parameter and mass accretion rate.
We can recover the total density profile by summing up
the individual contribution modeled by Equation (1),
which provides a prediction comparable to or even bet-
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consistently explain the trends in both A(p) and S(p),
although setting the parameter ✏ to 1/6 reproduces the
characteristic scale S(p) reasonably well. The main rea-
son for this failure is that for each stream, the Fillmore-
Goldreich solutions predict a steep inner profile with a
logarithmic slope of around �2 irrespective of the value
of ✏. One possible explanation for the shallow inner
cusps found in simulations is to introduce the non-zero
angular momentum, which can reduce the steepness of
the profile near the halo center (Nusser 2001; Zukin &
Bertschinger 2010). However, existing solutions allow
for the introduction of angular momentum in a very spe-

cific manner, and without a broad angular momentum
distribution, they fail to describe the shallow inner cusp
seen in the profile for each p.
We thus conclude that a more comprehensive theoret-

ical study is needed to fully understand the universal
features found in this Letter, taking into account the
complexities associated with mass accretion and merger
history. This may involve exploring the angular momen-
tum distribution or relaxing the symmetry assumptions
(see Ryden 1993; Lithwick & Dalal 2011, for the latter
aspect).

5. CONCLUSION

In this Letter, we have investigated the multi-stream
radial structures of dark matter halos in cosmological
N -body simulations. Our focus is on the radial distri-
bution of dark matter particles within the splashback
radius. We use the method developed by Sugiura et al.
(2020) to trace the trajectories of dark matter particles
and quantify the density profile for each stream, which
we label by p. With the help of 1, 001 snapshots between
z = 0 and 5, we are able to resolve the multi-stream
structure in phase space up to p = 40. The radial den-
sity profiles for each stream are accurately described by
a double power-law function (Equation 1), with charac-
teristic density A(p) and scale S(p) well-fitted respec-
tively to Equations (2) and (3). These results are
consistent across di↵erent sample selections based on
the concentration parameter and mass accretion rate.
We can recover the total density profile by summing up
the individual contribution modeled by Equation (1),
which provides a prediction comparable to or even bet-
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FIG. 2. Eigenfunctions for radial wave function ũn(x) for ↵ = 10 (left), 102 (middle), and 103 (right). Results of the lowest
five eigenstates are plotted as a function of dimensionless radius x = r/rs. shown. In the upper panels, while the thin solid
lines are the analytical results based on Eq. (38), thick dashed lines represent the numerical solutions obtained by solving the
matrix eigenvalue problem. Note that all the results are normalized. On the other hand, the bottom panels show the fractional
difference between the analytical and numerical results defined by �ũn/ũn,numerical with �ũn = ũn,analytical � ũn,numerical,
where the functions ũn,analytical and ũn,numerical denote the analytical and numerical eigenstates, respectively. Here, to avoid
the division by zero, we stop plotting the results when the amplitude of the wave functions becomes smaller than 10�9 at the
outer part.

FIG. 3. Same as Fig. 2, but we here plot the square of the wave function un(x) = x ũn(x), normalized by the one evaluated
at the origin, i.e., |un(x)|2/|un(0)|2. Note that the plotted results correspond to the density profile normalized by the central
density, ⇢(x)/⇢(0).

defined by (ũn,analytical�ũn,numerical)/ũn,numerical. On the
other hand, Fig. 3 shows the square of the wave function
un = x ũn, normalized it by the one evaluated at the ori-
gin, i.e., |un(x)|2/|un(0)|2, which corresponds to the den-
sity profile normalized by the central density, ⇢(x)/⇢(0).
The meaning of line types and colors are the same as
those shown in the upper panels of Fig. 2.

Clearly the agreement between analytical numerical re-
sults is excellent even for a small value of ↵, with which
we naively expect the analytical prediction to be inac-
curate. A closer look at the fractional difference reveals
a discrepancy at larger radii x for small ↵, where spiky
features arising from the zero-crossing points also become
prominent. Nevertheless, these behaviors appear mani-
fest only when the wave functions fall off and approach
zero, thus giving no serious impact even from the quan-
titative point of view. Indeed, looking at the density
profiles plotted in logarithmic scales (Fig. 3), we hardly
see a difference between analytical and numerical results.

Next look at the eigenvalues. Table I summarizes the
results in the case of ↵ = 103. Further, we plot in Fig. 4

the eigenvalues for the lowest five eigenstates as a func-
tion of ↵. Here, the eigenvalues computed from Eqs. (33)
and (37) are shown, depicted as solid and dotted lines,
respectively. Again, we see an excellent agreement be-
tween numerical and analytical estimations. It is surpris-
ing that the analytical estimation with Eq. (33) remains
accurate even at ↵ . 1, and reproduce numerical results.
Thus, we conclude that the solutions constructed analyt-
ically in Sec. III A provide a fast and reliable estimate of
the eigenfunctions and eigenvalues, which can be used to
study quantitatively the soliton core properties.

C. Analytical estimation of soliton core

In this subsection, before addressing the core-halo re-
lations, we shall compare the ground-state wave function
(n = 1) with the soliton density profile found in numeri-
cal simulations.

It has been found in numerical simulations that the
central core structure of FDM halos is well described by
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TABLE I. Comparison of analytically and numerically esti-
mated eigenvalues for the zero angular-momentum case. Set-
ting the parameter ↵ to 103, numerical values of E are sum-
marized by normalizing them by ↵, particularly for the lowest
five eigenstates.

E/↵ Numerical Eq. (33) Eq. (37)
n = 1 -0.86680 -0.86687 -0.85383
n = 2 -0.78318 -0.78323 -0.74286
n = 3 -0.72307 -0.72311 -0.65244
n = 4 -0.67531 -0.67535 -0.57261
n = 5 -0.63553 -0.63557 -0.49965

ũn(x) = xun(x) =

8
>>>><

>>>>:

{z(x)}1/4

{�g0(x)}1/4
Ai(z(x)) ; z(x) = ↵

1/3
h
3
2

R x
xc

p
�g0(x0) dx0

i2/3
, (x > xc)

{�z(x)}1/4

{g0(x)}1/4
Ai(z(x)) ; z(x) = �↵

1/3
h
3
2

R xc

x

p
g0(x0) dx0

i2/3
, (0  x  xc)

(38)

with the function g0 defined at Eq. (17). The eigen-
value E is obtained by solving Eq. (33) for a given ↵,
and the turning point xc is determined by g0(xc) = 0.
Note that the analytical expressions given above is not
normalized, and for a proper definition, it has to be
divided by the normalization constant N , defined by
N ⌘ {

R
dx

0
|ũn(x0)|2}1/2.

B. Comparison with numerical solutions

Having obtained the analytical expressions for eigen-
values and eigenfunctions, we now compare them with

numerical solutions. Based on the standard technique to
solve the stationary problem of Schrödinger equation, we
discretize Eq. (17). Then, solving differential equation
under the boundary conditions at Eq. (18) is reduced to
a matrix eigenvalue problem in the following form (e.g.,
Ref. [51]):

0

BBBBBBB@

2/�2 + V (x1) �1/�2
· · · 0 0

�1/�2 2/�2 + V (x2) �1/�2
· · · 0

... . . . . . . . . . ...

0
. . . �1/�2 2/�2 + V (xn�1) �1/�2

0 · · · 0 �1/�2 2/�2 + V (xn)

1

CCCCCCCA

0

BBBBBB@

ũ(x1)

ũ(x2)
...

ũ(xn�1)

ũ(xn)

1

CCCCCCA
= E

0

BBBBBB@

ũ(x1)

ũ(x2)
...

ũ(xn�1)

ũ(xn)

1

CCCCCCA
(39)

with the quantity � and the function V (x), respectively,
defined by � ⌘ xi+1 � xi and V (x) = �↵ log(1 + x)/x.

Figures 2 and 3 show the wave functions of the low-
est five eigenstates (i.e., n = 1, · · · , 5) for the param-
eters ↵ = 10 (left), 102 (middle), and 103 (right). In
upper panels of Fig. 2, thick dashed lines are the nu-
merical results of the function ũn, which are obtained

by setting the inner and outer boundaries to x1 = 0
and xn = 50 for ↵ = 10 and 20 for ↵ = 102 and 103

with the number of grids n = 104. These results are
compared to the analytical results depicted as thin solid
lines, with the amplitude of each eigenfunction properly
normalized. Bottom panels of Fig. 2 plot the fractional
difference between the analytical and numerical results,
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ũn(x) = xun(x) =

8
>>>><

>>>>:

{z(x)}1/4

{�g0(x)}1/4
Ai(z(x)) ; z(x) = ↵

1/3
h
3
2

R x
xc

p
�g0(x0) dx0

i2/3
, (x > xc)

{�z(x)}1/4

{g0(x)}1/4
Ai(z(x)) ; z(x) = �↵

1/3
h
3
2

R xc

x

p
g0(x0) dx0

i2/3
, (0  x  xc)

(38)
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values and eigenfunctions, we now compare them with

numerical solutions. Based on the standard technique to
solve the stationary problem of Schrödinger equation, we
discretize Eq. (17). Then, solving differential equation
under the boundary conditions at Eq. (18) is reduced to
a matrix eigenvalue problem in the following form (e.g.,
Ref. [51]):
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with the quantity � and the function V (x), respectively,
defined by � ⌘ xi+1 � xi and V (x) = �↵ log(1 + x)/x.

Figures 2 and 3 show the wave functions of the low-
est five eigenstates (i.e., n = 1, · · · , 5) for the param-
eters ↵ = 10 (left), 102 (middle), and 103 (right). In
upper panels of Fig. 2, thick dashed lines are the nu-
merical results of the function ũn, which are obtained

by setting the inner and outer boundaries to x1 = 0
and xn = 50 for ↵ = 10 and 20 for ↵ = 102 and 103

with the number of grids n = 104. These results are
compared to the analytical results depicted as thin solid
lines, with the amplitude of each eigenfunction properly
normalized. Bottom panels of Fig. 2 plot the fractional
difference between the analytical and numerical results,
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TABLE I. Comparison of analytically and numerically esti-
mated eigenvalues for the zero angular-momentum case. Set-
ting the parameter ↵ to 103, numerical values of E are sum-
marized by normalizing them by ↵, particularly for the lowest
five eigenstates.
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with the function g0 defined at Eq. (17). The eigen-
value E is obtained by solving Eq. (33) for a given ↵,
and the turning point xc is determined by g0(xc) = 0.
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ũ(xn)

1

CCCCCCA
= E

0

BBBBBB@
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ũ(xn�1)
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with the quantity � and the function V (x), respectively,
defined by � ⌘ xi+1 � xi and V (x) = �↵ log(1 + x)/x.

Figures 2 and 3 show the wave functions of the low-
est five eigenstates (i.e., n = 1, · · · , 5) for the param-
eters ↵ = 10 (left), 102 (middle), and 103 (right). In
upper panels of Fig. 2, thick dashed lines are the nu-
merical results of the function ũn, which are obtained

by setting the inner and outer boundaries to x1 = 0
and xn = 50 for ↵ = 10 and 20 for ↵ = 102 and 103

with the number of grids n = 104. These results are
compared to the analytical results depicted as thin solid
lines, with the amplitude of each eigenfunction properly
normalized. Bottom panels of Fig. 2 plot the fractional
difference between the analytical and numerical results,
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A factor dependent on the halo concentration ( ) & 
soliton eigenstate ( )

cvir
ℰ1,0/α

Eigenvalues, ℰn0/α

Density pro"le, ρ(x)/ρ(0)

• Self-gravity of soliton ignored  
• Soliton formed in the (smooth) NFW potential



Analytical approach to core-halo structure

Simulations mϕ = 0.8 × 10−22 eV
Core radius vs halo mass

(Schive et al. ’14)

Present work
adopting the concentration-mass relation  

 of FDM/CDM modelscvir(Mh)
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FIG. 8. The soliton core-halo mass relation adopting the c-M relation for the FDM model. Incorporating the c-M relation
of Ref. [52] into the predictions shown in Fig. 6, the results of the core radius vs halo mass (left) and the core mass vs halo
mass (right) relations are plotted, together with measured results from numerical simulations, for which the median values
and dispersions are also evaluated in each halo mass bin and are plotted as large filled circles and errorbars, respectively . In
plotting the predictions, we assume, for each halo mass, the log-normal distribution of cvir, and evaluate the median and the
scatter in the core-halo relation. In each panel, the thick solid line is the median relation, while the faint and dark shaded areas
respectively show the 1� and 2� scatter arising from the scatter in cvir. Note that the median relations shown here are hardly
distinguishable from the predictions computed with the mean c-M relation. For reference, the gray dashed lines are the scaling
relations numerically found by Ref. [51].

FIG. 9. Same as Fig. 8, but the predictions adopting the c-M relation of the CDM model by Ref. [53] are shown.

with p given by 0.65. Here we used the fact that
 ̃soliton(0) = �x

2
c/(14 �). In the above, the energy eigen-

value E has to be consistently evaluated, taking the soli-
ton potential into account. Employing the perturbative
calculation familiar in quantum mechanics, this is esti-

mated to give

E1/↵ ' E
(0)
1 /↵+

⇣
⇢c

⇢s

⌘Z
dx ũ

(0)
1 (x) e soliton(x) ũ

(0)
1 (x),

(59)

where the quantity E
(0)
1 stands for the unperturbed en-

A missing factor largely changes core-halo relations, showing extra 
cosmological dependence 

‣Non-negligible amount of scatter

“There is no universal core-halo relationship”

(Chan et al. ’22)

‣Non power-law behaviors

rc ∝ m−1
ϕ M−1/3

h
c.f.)  recent claim by Zagorac et al. (’23)

AT & Saga (’22)



Summary

Cold dark matter (CDM)

Fuzzy dark matter (FDM)

To be or not to be… (non-)universal features of innermost structure of 
dark matter halos based on analytical & numerical study

A new remarkable feature found 
in multi-stream structures

A missing factor in core-halo 
relations found analytically

ρstream(r; p) = A(p)
x (1 + x7) ; x ≡ r

S(p)
With  described by a simple "tting formA(p) & S(p)

Radial multi-stream pro!les 

Non power-law feature of core-halo 
relation dependent on cosmology

 no universal relation ?→
(concentration-halo mass relation)

Enomoto, Nishimichi & AT, arXiv:2302.01531

AT & Saga, arXiv:2208.06562 (in PRD)


