A03 group updates Investigation of Primordial Black **Holes and Macroscopic Dark Matter** (原始ブラックホール・ 巨視的ダークマターの探求)

Chulmoon YooNagoya U.Tomohiro HaradaRikkyo U.Sachiko Kuroyanagi Nagoya U. / IFT MadridAlexander KusenkoKIPMU / UCLAMisao SasakiKIPMU

Yasutaka Koga Na Takafumi Kokubu KII

Nagoya U. KIPMU

A03 Group

A03 group members

Chulmoon YooNagoya U.Tomohiro HaradaRikkyo U.Sachiko Kuroyanagi Nagoya U. / IFT MadridAlexander KusenkoKIPMU / UCLAMisao SasakiKIPMUYasutaka KogaNagoya U.Takafumi KokubuKIPMU

Collaborators participating regular meetingsAlbert EscrivàNagoya U.Shin-ichi HiranoTITechKazunori KohriKEKYuichiro TadaNagoya U.Takahiro S. YamamotoNagoya U.Shuichiro YokoyamaKMI/Nagoya

Students participating regular meetingsDaiki SaitoNagoya U.Koichiro UeharaNagoya U.Hayami IizukaRikkyo U.Akihito KatsumataRikkyo U.Ryoto InuiNagoya U.Katsuya AbeNagoya U.

Primordial Black Hole

Remnants of primordial non-linear inhomogeneityBHs not produced by late time stellar collapse

OReliable formation scenario:

collapse of rarely dense regions generated by quantum fluctuation during inflation It's rare, but has a finite probability!!

◎ If you accept inflation, you should be able to accept the **PBH formation**

OPBH is a plausible and appealing **DM** candidate

- BHs "exist" in our universe
- BHs behave as DM in a cosmological scale
- Reliable scenario of PBH formation

3

How many **PBHs** in our universe?

©They could provide a substantial part of **DM**

◎How large fraction of DM PBHs can account for?

To answer this, we need

- > precise theoretical estimation of abundance
- realistic and attractive models
- tests through observational constraints

OWhat are distinct characters of **PBH DM**?

For the prediction, we need

- deeper understanding of formation process
- finding model dependent features
- proposal of specific observables to probe it

OPossible other macroscopic DM?

Exotic stars (gravastar, soliton star, Q-balls...)

Activities of A03 in the fiscal year 2022

- 2205.05966 Gravitational wave matched filtering by quantum Monte Carlo integration and quantum amplitude amplification Miyamoto, Morrás, Yamamoto, Kuroyanagi, Nesseris
- 2206.03667 Graviton non-gaussianity in α-vacuum Kanno. Sasaki
- 2205.08320 Resolving information loss paradox with Euclidean path integral Chen, Sasaki, Yeom, Yoon
- 2203.14519 Radiative gravastar with Gibbons-Hawking temperature Nakao, Okabayashi, Harada
- 2205.12993 Criteria for energy conditions Maeda, Harada
- 2206.10251 Tunneling between multiple histories as a solution to the information loss paradox Chen, Sasaki, Yeom, Yoon
- 2206.10998 Conformally Schwarzschild cosmological black holes Sato, Maeda, Harada
- 2207.11910 Highly non-Gaussian tails and primordial black holes from single-field inflation Cai, Ma, Sasaki, Wang, Zhou
- > 2208.00696 *Effective inspiral spin distribution of primordial black hole binaries*
 - Koga, Harada, Tada, Yokoyama, Yoo
- 2208.02941 Non-Gaussianity effects on the primordial black hole abundance for sharply-peaked primordial spectrum Matsubara, Sasaki
- 2208.07504 Stationary Vacuum Bubble in a Kerr-de Sitter Spacetime Saito, Yoo

5

Activities of A03 in the fiscal year 2022

- 2208.13156 Deep learning for intermittent gravitational wave signals Yamamoto, Kuroyanagi, Liu
- 2209.12610 Relativistic orbits of S2 star in the presence of scalar field Bambhaniya, Joshi, Dey, Joshi, Mazumdar, Harada, Nakao
- 2210.07516 Periapsis shift of a quasi-circular orbit in a general static spherically symmetric spacetime Harada, Igata, Saida, Takamori
- 2210.17112 Einstein-Vlasov system with equal-angular momenta in AdS5 Asami, Yoo, Kitaku, Uemichi
- 2211.13477 Radiative gravastar with thermal spectrum; Sudden vacuum condensation without gravitational collapse Nakao, Okabayashi, Harada
- 2211.13512 The basics of primordial black hole formation and abundance estimation Yoo
- 2211.13950 Threshold of Primordial Black Hole Formation against Velocity Dispersion in Matter-Dominated Era Harada, Kohri, Sasaki, Terada, Yoo
- 2209.02272 Scale-invariant enhancement of gravitational waves during inflation Ota, Sasaki, Wang
- 2210.07050 Super-horizon resonant magnetogenesis during inflation Sasaki, Vardanyan, Yingcharoenrat
- 2211.12766 One-loop tensor power spectrum from an excited scalar field during inflation Ota, Sasaki, Wang
- 2211.13932 Logarithmic Duality of the Curvature Perturbation Pi, Sasaki
- > 2205.09777 Constraints on sterile neutrino models from strong gravitational lensing, Milky Way satellites, and Lyman-α forest IZelko, Treu, Abazajian, Gilman, Benson, Birrer, Nierenberg, Kusenko "What is dark matter?" Symposium 2022 fiscal year A03 PBH/

A03 PBH/macroscopic DM

Activities of A03 in the fiscal year 2022

- 2205.13557 Generating Non-topological Solitons Via Thermal Corrections: Higgs Balls Pearce, White, Kusenko
- 2208.09789 Inhomogeneous cold electroweak baryogenesis from early structure formation due to Yukawa forces Flores, Kusenko, Pearce, White
- 2209.04970 Gravitational waves from rapid structure formation on microscopic scales before matter-radiation equality Flores, Kusenko, Sasaki
- 2209.13313 Magnetogenesis from early structure formation due to Yukawa forces Durrer, Kusenko
- 2210.16462 Late-Forming PBH: Beyond the CMB era Lu, Kawana, Kusenko
- 2212.08793 Strong Lensing of High-Energy Neutrinos Taak, Treu, Inoue, Kusenko
- 2302.14419 Quasi-periodic relativistic shells in reflecting boundaries: How likely are black holes to form? Kokubu

Other activities

Regular meetings (https://sites.google.com/view/pbhmacrodm/)

5th meeting 2022/06/09 online10 mins short talks by Sasaki-san, Kusenko-san, Koga-san6th meeting 2022/08/09 in-personBrainstorming, 12 participants7th meeting 2022/11/21 in-personBrainstorming, with C01, about 20 participants

Workshop: Dynamics of primordial black hole formation (3/9,10)

Inflationary dynamics causing exponential tails

2211.13932 *Logarithmic Duality of the Curvature Perturbation* Pi, Sasaki

Inflationary dynamics causing exponential tails

©Effect of exponential tail non-Gaussian

There are several models which predict the exponential tail non-Gaussianity ⇒ the longer tail can cause large PBH abundance

 $eta = \int_{\Delta_{th}}^\infty P(\Delta) d\Delta$

Logarithmic duality of the curvature perturbation S. Pi & M. Sasaki, arXiv: 2211.13932

• exponential tails in PDF commonly appear in inflation with featured potentials

• dual expression $\mathcal{R} \equiv \delta N = \frac{1}{\lambda_{\pm}} \ln \left[1 + \frac{\lambda_{\mp} \delta \varphi}{\pi + \lambda_{\mp} \varphi} \right] + \cdots$ $\lambda_{\pm} = \frac{3 \pm \sqrt{9 - 12\eta}}{2}$ • Gaussian $\delta \phi$ leads to exponential tail in \mathcal{R} $P(\mathcal{R}) \sim \exp[-c \mathcal{R}]$

Non-Gaussian effects on PBH abundance

2208.02941 *Non-Gaussianity effects on the primordial black hole abundance for sharply-peaked primordial spectrum* Matsubara, Sasaki

Non-Gaussian effects on PBH abundance

©Effect of non-Gaussianity

The non-Gaussianity can significantly affect the **PBH** abundance

$$eta = \int_{\Delta_{th}}^\infty P(\Delta) d\Delta$$

Non-Gaussian effects on the PBH abundance for sharply-peaked primordial spectrum T. Matsubara & M. Sasaki, arXiv: 2208.02941 local NG effects have been well studies. How about other types of NG? squeezed equilateral, folded, orthogonal,... $2k_1 \approx 2k_2 \approx k_3$ $k_1 \approx k_2 \gg k_3$ $k_1 \approx k_2 \approx k_2$ $\sqrt{2}k_1 \approx \sqrt{2}k_2 \approx k_3$ perturbatively, they can be concisely given by a multiplicative factor PBH fraction: $\beta \approx \beta^{G} \exp \left[v^{2} \varDelta_{c} \left(\frac{S_{3}}{6} + \frac{\varDelta_{c} S_{4}}{24} \right) \right]$ S₃: skewness S_4 : kurtosis $S_{3} \simeq \frac{6}{5} \left(f_{\rm NL}^{\rm loc} - 3f_{\rm NL}^{\rm eql} + 3f_{\rm NL}^{\rm fol} - 9f_{\rm NL}^{\rm ort} \right) S_{3}^{\rm I}$ critical density contrast

Effective Inspiral Spin Distribution of Primordial Black Hole Binaries

2208.00696 Effective inspiral spin distribution of primordial black hole binaries Koga, Harada, Tada, Yokoyama, Yoo

Effective spin distribution of PBH binaries

PBH & PBH binary formation from density fluctuation

Kev assumptions:

-Gaussian distribution of the density contrast.

-Almost monochromatic power spectrum.

-The peaks higher than the threshold form PBHs in radiation era.

-Two PBHs are randomly chosen and form a binary.

PBH binary distribution

 $(spin a_1, mass M_1)$

single PBH PDF PDF of intrinsic param.: $P(\mathbf{x})d\mathbf{x} = 2 \prod P(a_i, M_i, \theta_i, \phi_i)da_i d\nu_i d\theta_i d\phi_i$, $\mathbf{x} = (a_1, M_1, \theta_1, \phi_1, a_2, M_2, \theta_2, \phi_2)$. i = 1.2

Binary parameters:

-Effective inspiral spin: $\chi_{\text{eff}}(a_i, M_i, \theta_i) = \frac{M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2}{M_1 + M_2}$ -Mass ratio: $q(M_i) = M_2/M_1$ Results of $P(\chi_{eff}, q)$: -rms: $\sqrt{\langle \chi^2_{\text{eff}} \rangle} = 8.4 \times 10^{-4}$. -No correlation btwn $\chi_{eff} \& q$

(contribution of large a_2 is suppressed for $q \ll 1$).

-Consistent with the O3 data analysis (cf. Callister+ '21).

Threshold of PBH formation against velocity dispersion in MD era

2211.13950 Threshold of Primordial Black Hole Formation against Velocity Dispersion in Matter-Dominated Era Harada, Kohri, Sasaki, Terada, Yoo

Threshold against velocity dispersion in ME era

- No time for virialization of 1/k scale
- $\succ \delta \text{ and } v \text{ (velocity perturbation) grow}$
- become non-linear
- velocity dispersion released and shared in the PBH scale

©for Log-normal spectrum

 $\ln \sigma_{
m ent}(k) = -\mu (\ln k/k_{
m PBH})^2 + \ln \sigma_0$

©Effect of velocity dispersion $\delta_{
m th} \sim \sigma^{2/5}$ with $\sigma = <\delta>$

 $eta \sim \sigma^{3/5} \exp[-\sigma^{-6/5}]$

It may give a comparable contribution to the spin effect

"What is dark matter?" Symposium 2022 fiscal year

Cosmological Black Hole Spacetime

2206.10998 *Conformally Schwarzschild cosmological black holes* Sato, Maeda, Harada

Cosmological black hole spacetimes

- T. Sato, H. Maeda and T. Harada, "Conformally Schwarzschild cosmological black holes", CQG 39 (2022) 21, 215011, e-Print:2206.10998 [gr-qc]
 - Quest for an analytic cosmological black hole spacetime
 - We consider a metric tensor $g = a^2(\eta)g_{\rm Sch}$ with some time coordinate η and the scale factor $a(\eta)$.

• We find η and $a(\eta)$ so that the spacetime can be asymptotically FLRW universe with a regular event horizon but with serious breakdown of all standard energy conditions.

New data analysis method for a popcorn-like stochastic GWBG

2201.13414 Tracking the origin of black holes with the stochastic gravitational wave background popcorn signal Braglia, Garcia-Bellido, Kuroyanagi
 2208.13156 Deep learning for intermittent gravitational wave signals Yamamoto, Kuroyanagi, Liu

New data analysis method for popcorn-like GWBG

SGWB spectrum from BBHs

PBH binaries form a stochastic GW background and it could have popcorn feature

Braglia et al. (+SK), MNRAS 519, 4, 6008 (2023), arXiv:2201.13414

We developed a deep learning code to detect such background. It shows almost the same performance as the conventional method (and it's faster!)

Yamamoto et al. (+SK), accepted by PRD, arXiv:2208.13156

19

Simulation of spinning **PBH** formation

Ongoing by CY

3+1 dimensional simulation of PBH formation

Olnitial curvature perturbation

 $ds^2 \simeq -dt^2 + a(t)^2 e^{-2\zeta(x)} dec x \cdot dec x$

 ζ ~gravitational potential on (x,y) plane

$\Delta \zeta \sim$ energy density on (x,y) plane

tidal torque \Rightarrow angular momentum transfer \Rightarrow spinning **PBH**

©3+1 dimensional full GR numerical simulation with BSSN formalism

"What is dark matter?" Symposium 2022 fiscal year

A03 PBH/macroscopic DM

Spinning PBH formation...?

ONon-zero spin parameter … ?

A03 PBH/macroscopic DM

22

It's time to study **Primordial Black Hole!**

©We aim to develop the **PBH** study further and clarify the possibility of **PBH DM**

©The field is broad and still many possibilities to extend and think of

OAnybody is welcome to join us. Please contact me if you are interested in our activity.

Let's enjoy PBH research with us! Thank you for your attention.

