
Dark Matter and Quantum Gravity

Satoshi Shirai (Kavli IPMU)

Model for Dark Matter

QFT and QG

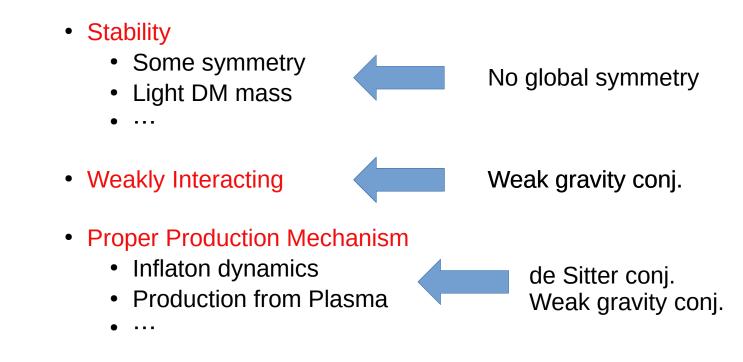
Consistent QFT

Swampland

Compatible with QG (Landscape)

Example of Swampland

- No global symmetry Banks & Dixon 88
- Weak gravity conjecture Arkani-Hamed et.al. 2006
 - Gravity should be weakest force.
- Distance conjecture Ooguri & Vafa 2006
 - Derivation of filed VEV is less than M_{pl} .
- de Sitter conjecture Obied et.al, 2018
 - Forbidding flat potential with V>0.

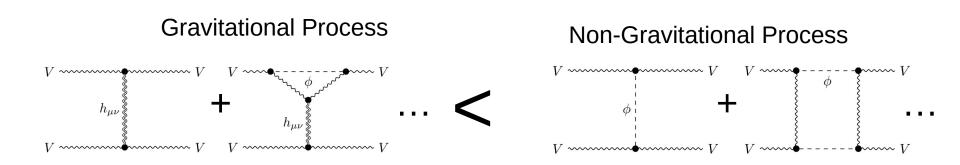

QG Challenge for DM

Requirement of Dark Matter

- Stability
 - Some symmetry
 - Light DM mass
 - • • •
- Weakly Interacting
- Proper Production Mechanism
 - Inflaton dynamics
 - Production from Plasma
 - • • •

QG Challenge for DM

Requirement of Dark Matter



DM and Quantum Gravity

- Model building avoiding swampland conditions.
 - e.g., Based on accidental symmetry of gauge theory. [YN, SS & MY]
- Improving swampland condition in quantitative way.
 - Gravitational Positivity Bound on Dark Matter Model.
 [K.Aoki, T.Noumi, RS, S.Sato, SS, J.Tokuda & MY]

Positivity Bound

Condition of EFT has "good" high energy theory including gravity.

Dark Matter cannot be "completely dark."

Phenomenological Implication

- Applying concrete models:
 - Dark Gauge Boson
 - Lower-bound on mass and interaction strength
 - Minimal Higgs-portal Dark Matter Model
 - Lower-bound on Higgs-DM interaction
 - Tension with Freeze-in scenario?
 - • • •
- Uncertainty of constraint.
 - Constraint also depends on details of QG.
 - Discovery of DM may probe QG.

Two Exciting Talks

- Toshifumi Noumi
 - Overview of gravitational positivity bound.
 - Application to SM and new physics.
- Katsuki Aoki
 - Positivity bound on massive and unstable particles.