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• Motivation  

• Dwarf Spheroidal Galaxy (dSph,  small 
galaxy, old stellar population with little dust.  

• The center must contains dark matter and 
good place to look for dark matter pair 
annihilation.  

• Central density of dark matter (J factor) 

• set limit on dark matter interaction or dark 
matter interactions   
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No significant gamma-ray signal from dSphs was found in the Fermi-LAT data, either individually
in each dSph (the largest deviation from the null hypothesis is found for Sculptor, with �2 ln lP = 4.3),
or in the combined analysis (�2 ln lP = 1.3). Some of the obtained exclusion limits are shown in
Figure 2. This work represents the most constraining search for WIMP annihilation signals for the dark
matter particle mass range below ⇠1 TeV. As shown in the figure, the limits exclude the thermal relic
cross section for mc < 100 GeV in the case of annihilation into bb̄ or t+t� pairs.

the bb̄ and τþτ− channels with expectation bands derived
from the analysis of 300 randomly selected sets of blank
fields. Sets of blank fields are generated by choosing
random sky positions with jbj > 30° that are centered at
least 0.5° from 3FGL catalog sources. We additionally
require fields within each set to be separated by at least
7°. Our expected limit bands are evaluated with the 3FGL

source catalog based on four years of PASS7 REPROCESSED

data and account for the influence of new sources present in
the six-year PASS8 data set.
Comparing with the results of Ackermann et al. [13], we

find a factor of 3–5 improvement in the limits for all
channels using six years of PASS8 data and the same sample
of 15 dSphs. The larger data set as well as the gains in the

LAT instrument performance enabled by PASS8 both
contribute to the increased sensitivity of the present
analysis. An additional 30%–40% improvement in the
limit can be attributed to the modified functional form
chosen for the J factor likelihood (3). Statistical fluctua-
tions in the PASS8 data set also play a substantial role.
Because the PASS8 six-year and PASS7 REPROCESSED

four-year event samples have a shared fraction of only
20%–40%, the two analyses are nearly statistically inde-
pendent. For masses below 100 GeV, the upper limits of
Ackermann et al. [13] were near the 95% upper bound of
the expected sensitivity band while the limits in the present
analysis are within 1 standard deviation of the median
expectation value.

FIG. 1 (color). Constraints on the DM annihilation cross section at the 95% CL for the bb̄ (left) and τþτ− (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300 randomly
selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected sensitivity while the
bands represent the 68% and 95% quantiles. For each set of random locations, nominal J factors are randomized in accord with their
measurement uncertainties. The solid blue curve shows the limits derived from a previous analysis of four years of PASS7 REPROCESSED

data and the same sample of 15 dSphs [13]. The dashed gray curve in this and subsequent figures corresponds to the thermal relic cross
section from Steigman et al. [5].

FIG. 2 (color). Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and τþτ− (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3σ limit) [57], 112 hours of observations of the
Galactic center with H.E.S.S. [58], and 157.9 hours of observations of Segue 1 with MAGIC [59]. Pure annihilation channel limits for
the Galactic center H.E.S.S. observations are taken from Abazajian and Harding [60] and assume an Einasto Milky Way density profile
with ρ⊙ ¼ 0.389 GeV cm−3. Closed contours and the marker with error bars show the best-fit cross section and mass from several
interpretations of the Galactic center excess [16–19].
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Figure 2. The 95% confidence-level upper limits to hsvi for the cc ! bb̄ (left) and cc ! t+t� (right)
annihilation channels derived from 6-year observations of 15 dSphs with Fermi-LAT. The dashed black
line shows the median of the distribution of limits obtained from 300 simulated realizations of the
null hypothesis using LAT observations of high-Galactic-latitude empty fields, whereas green and
yellow bands represent the symmetric 68% and 95% quantiles, respectively. The dashed gray curve
corresponds to the thermal relic cross-section [54]. Reprinted figure with permission from reference [37];
copyright (2014) by the American Physical Society.

These results were combined with MAGIC observations of Segue 1, into the first coherent search
for dark matter using several gamma-ray instruments [22]. Details about this work are provided below.

In a later work, the Fermi-LAT and the Dark Energy Survey (DES) collaborations also used the
data from 6 years of observations to look for dark matter signals over a sample of 45 stellar systems
consistent with being dSphs [55]. The search was performed shortly after the discovery of 17 of the
considered dSph candidates, for which no reliable estimate of the dark matter content was available at
the time. Because of this, all considered candidates were assumed to be point-like sources, and the
J-factors for the non-confirmed dSphs estimated from a purely empirical scaling relation based on
their heliocentric distance. For four of the examined dSphs, a 2s discrepancy with the null hypothesis
was found, which does not contradict significantly such hypothesis, particularly once the number
of investigated sources, channels and masses is considered. Overall, the strategy of observing a set
of not fully confirmed dSphs candidates, for which no reliable estimate of the J-factor exists yet is
justified since a solid positive gamma-ray signal from any of the observed targets would have been
considered a strong experimental evidence of dark matter annihilation or decay. In absence of such
signal, however, the obtained limits are less robust than those from the 15 confirmed dSphs described
above, which remain the reference in the field for the sub-TeV mass range.

5.2. Cherenkov Telescopes

Dark matter searches with Cherenkov telescopes have evolved from simple event-counting
analyses to more complex maximum-likelihood analyses of optimized sensitivity thanks to the
inclusion of the expected spectral and morphological features of the dark matter signals [56].

In the most basic version of the likelihood function, the nuisance parameters µ (see Equation (15))
are the bij factors themselves. They are constrained by measurements in signal-free, background-control
(or Off) regions with t times the exposure of the signal (or On) region. A more complete analysis
also includes the treatment of t as a nuisance parameter, given that the latter is normally affected by



The Jeans equation: basics partial differential equation to estimate the 
gravitational potential  from the stellar system.  

Spherical Jeans equation  

Number density of stars: ν(r) 
Variance of the velocity: σr (r ) σθ (r) σφ(r ) 
Potential: Φ(r)  

If we know the star position and velocity distribution (x, y, z, vr, vθ, vφ) ,                
we can infer the total mass distribution in the system.  
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ABSTRACT
We introduce a neural spherical jeans analysis for estimating the dark matter density profile of a spherical system given anisotropy
profile. Model-independent analysis. We train our neural network using maximum likelihood estimation, without using Abel
transformations.
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3 GENERATOR MODEL

3.1 Position: normalizing Flows

[SH: A copy of normalizing flow explanation part from other draft.
Do not reuse.]

Normalizing flows are a type of neural network, which learn a
transformation from a simple base probability distribution to a func-
tion representing the unknown probability distribution from which
the training data was drawn. A fully trained normalizing flow allows
for both density estimation of a dataset as well as sample generation
from the approximated density distribution. A short summary of the
idea is as follows.

Let ÆI and ÆH be ⇡-dimensional random variables with the base
distribution and training data distribution, respectively. The standard
normal distribution is conventionally used as the base distribution
because of its tractability. Normalizing flows will learn a bĳective
transformation 6 between ÆI and ÆH:

ÆH = 6(ÆI). (4)

Once this transformation has been learned by the network, upsam-
pling the dataset using normalizing flows is then straightforward:
randomly sample from a multidimensional standard normal distribu-
tion, and transform to synthetic data in the training space by using
the above formula.

However, building a parametric model of 6 that can represent
varieties of bĳections is not straightforward. Instead, we construct
the transformation 6 as a composition of simple nonlinear bĳective
functions 68 such that their inverse and Jacobian determinants are
easy to compute.

6 = 6# � 6#�1 � · · · � 61. (5)

Sufficiently long chains of such transformations are capable of mod-
eling a highly non-trivial distribution.

We will consider two examples of the transformation: masked
autoregressive flows, and continuous normalizing flows. The masked
autoregressive flows are shown to be effective on the mass density
estimation of the h277 dataset by solving the Boltzmann equation (?).
We will consider the masked autoregressive flows as a baseline model
of normalizing flows. Meanwhile, the continuous normalizing flows
have a good inductive bias for modeling smooth distributions so that
this model may learn better velocity distributions than the masked
autoregressive flows. We will compare the upsampling performance
of these two normalizing flows. [SH: explanation is added and I make
it into a separate paragraph.]

Training normalizing flows are based on maximum likelihood es-
timation. If the inverse transformation of 6 and the Jacobian deter-
minant |3ÆI/3ÆH | are easy to compute, the change of variable formula
can be used to compute the probability density function of ÆH:

?(ÆH) = ?(ÆI) ·
���� 3ÆI
3ÆH

���� = ?(6�1 (ÆH)) ·
���� 36

�1 (ÆH)
3ÆH

���� . (6)

This parametric model of the probability density of ÆH can be used for
training the bĳection 6.

3.2 continuous normalizing flows

Continuous normalizing flow (CNF) is a model parametrizing the
transformation between the base distribution and target distribution
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Normalizing flows are a type of neural network, which learn a
transformation from a simple base probability distribution to a func-
tion representing the unknown probability distribution from which
the training data was drawn. A fully trained normalizing flow allows
for both density estimation of a dataset as well as sample generation
from the approximated density distribution. A short summary of the
idea is as follows.

Let ÆI and ÆH be ⇡-dimensional random variables with the base
distribution and training data distribution, respectively. The standard
normal distribution is conventionally used as the base distribution
because of its tractability. Normalizing flows will learn a bĳective
transformation 6 between ÆI and ÆH:

ÆH = 6(ÆI). (4)

Once this transformation has been learned by the network, upsam-
pling the dataset using normalizing flows is then straightforward:
randomly sample from a multidimensional standard normal distribu-
tion, and transform to synthetic data in the training space by using
the above formula.

However, building a parametric model of 6 that can represent
varieties of bĳections is not straightforward. Instead, we construct
the transformation 6 as a composition of simple nonlinear bĳective
functions 68 such that their inverse and Jacobian determinants are
easy to compute.

6 = 6# � 6#�1 � · · · � 61. (5)

Sufficiently long chains of such transformations are capable of mod-
eling a highly non-trivial distribution.

We will consider two examples of the transformation: masked
autoregressive flows, and continuous normalizing flows. The masked
autoregressive flows are shown to be effective on the mass density
estimation of the h277 dataset by solving the Boltzmann equation (?).
We will consider the masked autoregressive flows as a baseline model
of normalizing flows. Meanwhile, the continuous normalizing flows
have a good inductive bias for modeling smooth distributions so that
this model may learn better velocity distributions than the masked
autoregressive flows. We will compare the upsampling performance
of these two normalizing flows. [SH: explanation is added and I make
it into a separate paragraph.]

Training normalizing flows are based on maximum likelihood es-
timation. If the inverse transformation of 6 and the Jacobian deter-
minant |3ÆI/3ÆH | are easy to compute, the change of variable formula
can be used to compute the probability density function of ÆH:

?(ÆH) = ?(ÆI) ·
���� 3ÆI
3ÆH

���� = ?(6�1 (ÆH)) ·
���� 36
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This parametric model of the probability density of ÆH can be used for
training the bĳection 6.

3.2 continuous normalizing flows

Continuous normalizing flow (CNF) is a model parametrizing the
transformation between the base distribution and target distribution
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DARK MATTER DENSITY ESTIMATION
 Star information is limited  (x,y, z, vr, vθ, vφ)→ (x, y, vlos)  
(los=line of sight) 

There is analytical solution connecting  los distribution to  6D coordinate 
under some assumptions.  Information of 6D distribution is there, but 
not easy to handle.  
    Ex  

  

The dark matter density (gravitational potential) is infered from 
observation by  template study. Namely,  set of   (the potential Φ and 
star profile)  is compare with the data, and best solution is obtained.  
       generated star distribution ⇄data (MCMC study)  

Profile  of dark matter density  
→ γ (singularity at the center) →dark matter signature from dSph

6 / 13 

Line-of-sight observables
However, we cannot access the full data so that the analysis is not straightforward.
We are observing far away stars from a single direction.

Number density of stars:

Variance of radial velocity

Velocity anisotropy

Number density of stars:

Variance of line-of-sight velocity

But we have to infer them from projected pro8les

Spherically symmetric case

The full parameters can not be inferred directly from the data,

cf. Analytical solution for the inversion exist (Abel transformation)

Two degrees of freedom of the velocity are lost during the projection.
The velocity anisotropy is assumed to compensate the lost information. 

See also Ullio and Valli, JCAP 07 (2016) 025, 
arXiv:1603.07721 for full closed form solution 
of the dark matter density for the symmetric case.

But if we use GAN, we do not need this inversion formula,
and this may help for dealing with more general cases.

3004 V. Bonnivard et al.

the projected stellar density I(R), the DM profile ρDM(r) and the
anisotropy profile β(r), and to find the best-fitting parameters that
reproduce the measured velocity-dispersion profile σ obs(R).

2.1.1 Dark matter profiles

We use two families of DM profiles in this study:

(i) Zhao profiles (Hernquist 1990; Zhao 1996). This family of
profiles requires three slope parameters (α, β, γ ), the values of
which allow the recovery of several DM profiles used in the literature
(e.g. core, NFW, Moore). It is parametrized as

ρZhao
DM (r) = ρs

(r/rs)γ × [1 + (r/rs)α](β−γ )/α
(8)

with ρs the normalization, rs the scale radius, γ the inner slope,
β the outer slope and α the transition slope. Note that with this
definition, ρs = ρ(rs) × 2(β − γ )/α .

(ii) Einasto profiles (e.g. Merritt et al. 2006). This second family
of profiles, using a logarithmic inner slope, was found to better fit
DM haloes in numerical simulations (Navarro et al. 2004; Springel
et al. 2008):

ρEinasto
DM (r) = ρ−2 exp

{
− 2

α

[(
r

r−2

)α

− 1
]}

, (9)

where r−2 is the radius for which the logarithmic slope equals −2,
and α controls the logarithmic slope sharpness.

2.1.2 Light profiles

Stellar surface brightnesses of dSphs are generally fitted using
Plummer (1911), King (1962) or Sersic (1968) profiles (e.g. Ir-
win & Hatzidimitriou 1995), but exponential and Zhao (for the 3D
stellar density) profiles have also been considered. De-projection
(or projection in the Zhao case) of these profiles rely on the Abel
transform of equation (5), which may be analytically computed in
some cases. We give below the adopted parametrizations and refer
the reader to the associated references for de-projected analytical
formulae (for the Plummer, exponential and King cases).

(i) The Plummer profile (Plummer 1911) reads

I Plummer(R) = L

πr2
half

1
[1 + R2/r2

half ]2
, (10)

with L the total luminosity, and rhalf the projected half-light radius.
(ii) The exponential profile (Evans, An & Walker 2009) is

parametrized as

I exp(R) = I0 × exp
(

−R

rc

)
, (11)

with I0 the normalization, and rc the scale radius of exponential
decrease.

(iii) The King profile (King 1962) is written as

IKing(R) = I0 ×
[(

1 + R2

r2
c

)−1/2

−
(

1 + r2
lim

r2
c

)−1/2
]

, (12)

with I0 the normalization, rc the ‘core’ radius and rlim the maximum
radius beyond which the density goes to zero.

(iv) The Sérsic profile (Sersic 1968; Prugniel & Simien 1997)
reads

I Sérsic(R) = I0 × exp

{
−bn ×

[(
R

rc

)1/n

− 1

]}
, (13)

with bn = 2n − 1/3 + 0.009876/n, I0 the normalization, n ! 0.5
an irrational number (controlling the sharpness of the logarithmic
decrease) and rc a scale radius.

(v) Finally, the Zhao profile (Hernquist 1990; Zhao 1996) given
by equation (8) is here applied to the 3D (i.e. unprojected) light
profile,

νZhao(r) = ρZhao
DM (r). (14)

In this case, the light profile is analytical for the 3D density profile
ν(r) but has to be numerically projected along the l.o.s. to provide
the surface brightness I(r).

As already mentioned, we assume that DM dominates the gravi-
tational potential at all radii (all measured dSphs have central mass-
to-light ratios ! 10, e.g. Mateo 1998), so that the value of the
normalization factor (L or I0) has no bearing on the analysis.

2.1.3 Velocity anisotropy profiles

We recall that the velocity anisotropy profile is given by a combi-
nation of the radial and tangential velocity dispersion:

βani(r) ≡ 1 − v̄2
θ (r)

v̄2
r (r)

. (15)

Due to the lack of observational constraints on this quantity, the
first anisotropy profiles discussed in the literature were based on
analytical studies aiming at building dynamical models (in spheri-
cal symmetry) with self-consistent stellar phase-space distribution
functions. Many such models have simple anisotropy profiles that
are either constant or change from isotropic near the centre to ra-
dial at large radius (e.g. Osipkov 1979; Merritt 1985, see below).
More recently, indications of radial anisotropy in the outer regions
of DM haloes have been obtained from numerical simulations (e.g.
Diemand, Moore & Stadel 2004). In the inner region, a strong
anisotropy can be generated by dynamical formation and evolution
processes. To better describe these profiles, Baes & van Hese (2007)
introduced a technique to construct dynamical models with arbitrary
mass density and anisotropy profiles. These three different families
of anisotropy profiles are described below and will be explored in
Section 5.

(i) The constant anisotropy modelling (e.g. used by Charbonnier
et al. 2011) simply reads

βCst
ani (r) = β0. (16)

(ii) The Osipkov–Merritt profile (Osipkov 1979; Merritt 1985) is
parametrized as

βOsipkov
ani (r) = r2

r2 + r2
a

, (17)

with a single free scale parameter ra which locates the transition
from βani = 0 in the inner parts (isotropic) to 1 at large radii (full
radial anisotropy).

(iii) The Baes and van Hese profile (Baes & van Hese 2007) is
more general and is written as

βBaes
ani (r) = β0 + β∞(r/ra)η

1 + (r/ra)η
, (18)

where the four parameters are the central anisotropy β0, the
anisotropy at large radii β∞, and the sharpness of the transition
η at the scale radius ra. The Osipkov–Merritt profile is recovered
when using β0 = 0, β∞ = 1 and η = 2.
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OUR PROPOSAL 
•Create the star phase space distribution consistent to the 
data using normalizing flow.  

(New  treatment of model that impose spherical 
symmetry and boundary condition without introducing 
penalty term to the loss function --to be reported )  

•Use Jeans equation to obtain M(r) from the model  

•Fit using 1000 stars from  GAIA Challenge Dataset 
reproduce the assumed density profile ( stellar distribution 
-generalized Plummer  model , DM density distribution 
NFW) 

•Error estimate based of bootstrapping of the sample star 
looks reasonable   

•More consistency check needed (varying β(r), fit region, 
even smaller sample, non-spherical)  

Include Observational effect 

GENERATOR 
  AS 

NF MODELS 
ν(r |θ), σ(r |θ′ )

SAMPLE 
⭐  ⭐

DATA  
⭐ 　⭐  

OBSERVATIONAL  
QUANTITIES 

❎gradient flow


