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Outline
 What are galaxies?

 What we observe and what we infer
 Light and Dark matter

 Galaxies of the Local Group
 How do galaxies form? 

 Cosmological structure formation and content 
of the Universe

 What can Local Group galaxies tell us?
 Study individual stars – detailed information 
 Old (low mass) stars nearby formed at early 

epochs –> early star formation
 Origin of the elements: we are stardust
 Nature of Dark Matter



The Milky Way Viewed by the 
Gaia Satellite

More than one billion stars

Early Data Release 3 (Dec 2020): positions and brightnesses.
Subsets have measured geometric distances and motions.

 ESA/Gaia/DPAC 



Cartoon of the Milky Way Galaxy

IoA, Cambridge



Ages estimates for ~33 million stars in Gaia DR3

Kordopatis et al 2023

Mean age



M31, the Andromeda nebula, is our nearest 
comparable neighbour – large disc galaxy

Moving towards 
our Galaxy – will 
collide in ~5Gyr



A Typical Dwarf Satellite Galaxy: Leo I
Dwarf spheroidal 
old stars, no gas



A More Typical Ultra-Faint Dwarf Satellite Galaxy: 
Leo IV

Ancient stars, 
no gas

Identified in star counts through pattern recognition: matched filter



Dark matter in galaxies detected through gravity

Red: observed 
orbital speed of 
gas, as a function 
of distance from 
the galaxy’s center 

Blue: predicted 
from Newton’s 
laws and observed 
mass distribution

↑
↓

`Missing 
mass’ 

Flat Rotation Curve

Large discrepancy in outer parts: 
dark matter halo, ~x10 in mass

Gilmore & RW 1989 



A galaxy is…
 A vast assemblage of stars, gas and ‘dark matter’ held 

together by gravity, dominated by dark matter
 (ultra-faint) dwarfs are most dark-matter dominated
 many more low-mass galaxies than high-mass ones
 galaxies cluster: Local Group - Milky Way, M31 plus their 

retinues of satellites
 Cosmic star formation started ~13 billion years ago 

 stars are forming today, from gas, in galaxies 
 forms many more low-mass stars than high-mass ones
 the most massive stars (~50 times the mass of the Sun) 

live for only a few million years,  solar mass stars live ~ 
10 billion years ~ age of the Universe
 Low-mass stars from the early Universe are still here!
 Counting old low-mass stars yields early mass function 

(e.g. RW et al 2002)



Origin of the Elements
 The hot, dense conditions of the early (expanding) 

Universe created ~75% Hydrogen and ~25% Helium 
 Stars shine through nuclear fusion in their cores, 

creating elements heavier than Helium  ‘metals’
o first stars are metal-free, Big Bang creates only H, He
ometals ejected when stars die, in supernova explosions 

(also create metals, beyond ‘iron peak’)
o incorporated into surrounding gas and then into new 

generations of stars, metallicity increases with time
 Stars of different masses create different elements, on

different timescales
 Elemental abundance patterns measured in stars depend 

on mass distribution of previous generations, plus star-
formation history (e.g. Gilmore & RW 1991; RW & Gilmore 1992)



ΛCDM: impressive consistency with matter power 
spectrum over five orders in length scale

Tegmark & Zaldarriaga

??

Galaxy scales

/DES



Galaxy Scales Reveal Nature of Dark Matter
Ostriker & Steinhardt

CDM: Cusp in 
inner density 
profile

CDM: many 
small galaxies

Use Local Group galaxies as tests of theory! Can study 
individual stars  motion, chemical abundances…

DM halo Mass function Central DM density 



Cold Dark Matter predicts small galaxies form first, 
merging to form successively larger systems

Boylan-Kolchin et al 09
Moore et al 1999

• Active merger history for  
typical Milky Way size haloes

• Much surviving substructure 
& streams within the Galaxy

• Many satellite ‘galaxies’

Time  t=1 Gyr 3Gyr                        6Gyr         13.7 Gyr (now)

0.5Gyr         13.7 Gyr (now)

Dark-matter only, N-body 
simulations - need to model baryonic physics



Galaxy-scale Challenges for ΛCDM
ΛCDM extremely successful on large scales but….
 `Missing satellites’ – theoretical predictions of many more 

low-mass dark haloes than visible satellite galaxies around the 
Milky Way (Moore et al 1999; Klypin et al 1999) – numbers 
perhaps now OK but spatial distribution, stellar pops are not

 ‘Too Big to Fail’ – predictions of massive dark sub-haloes of 
Milky Way mass dark haloes that should form stars but are not 
visible (Boylan-Kolchin et al 2011, 2012)

 ‘Core vs Cusp’ – predictions of rising dark-matter density 
profile to central regions whereas cores are often favoured 
(e.g. Gilmore, Wilkinson, RW et al 2007; Walker & Penarrubia 2011; 
Oh et al 2015; Read et al 2016; Santos-Santos et al 2020) 

 Bulgeless disk galaxies and old thick disks – predictions of 
active merger histories lead to massive bulges and young thick 
disks, at odds with observations (e.g. Toth & Ostriker 92; RW 01)
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Milky Way (Moore et al 1999; Klypin et al 1999) – numbers 
perhaps now OK but spatial distribution, stellar pops are not

 ‘Too Big to Fail’ – predictions of massive dark sub-haloes of 
Milky Way mass dark haloes that should form stars but are not 
visible (Boylan-Kolchin et al 2011, 2012)

 ‘Core vs Cusp’ – predictions of rising dark-matter density 
profile to central regions whereas cores are often favoured   
(e.g. Gilmore, Wilkinson, RW et al 2007; Walker & Penarrubia 2011; 
Oh et al 2015; Read et al 2016; Santos-Santos et al 2020) 

 Bulgeless disk galaxies and old thick disks – predictions of 
active merger histories lead to massive bulges and young thick 
disks, at odds with observations (e.g. Toth & Ostriker 92; RW 01)

Baryonic Physics or Dark Matter Physics?

Stellar populations – kinematics, spatial 
distribution, ages, chemistry, IMF – are 
critical to deciphering Galaxy formation 
and the nature of dark matter



The Fossil Record: Galactic Archaeology
 Studying low-mass stars of all ages nearby allows us to 

decipher the evolution of the host galaxy  
 There are copious numbers of stars nearby that have ages 

> 10 Gyr : formed at redshifts > 2  
 ‘cosmic noon’ when global star formation rate peaked

 Retain memory of initial/early conditions: surface chemical 
abundances (gas from which they formed), orbital 
dynamical quantities e.g. energy and angular momentum            
→ clustering in chemical+kinematic/dynamical phase space

 Complementary approach to galaxies at high redshift
 Snapshots of different galaxies at different times vs 

temporal sequence of typical system(s)
 Individual stars can break degeneracies of integrated light

e.g. age/metallicity

~



Cored Density Profiles: 
Dark Matter Physics or Baryonic Physics? 

 Measured motions of stars or 
gas + Newton’s Laws give 
cored present-day profiles

Gilmore et al 
(RW) 2007
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cored present-day profiles

Oh et al 2011



Cored Density Profiles: 
Dark Matter Physics or Baryonic Physics? 

 Measured motions of stars or 
gas + Newton’s Laws give 
cored present-day profiles
 Could the predicted CDM 

cusped profile have been 
flattened by some process?

Oh et al 2011



Cored Density Profiles: 
Dark Matter Physics or Baryonic Physics? 

 Measured motions of stars & 
gas + Newton’s Laws give 
cored present-day profiles 
 Could the predicted CDM 

cusped profile have been 
flattened by some process?

 Yes! Rapid injection of 
energy and momentum 
from short-lived massive 
stars can remove large 
fraction of baryons, cause 
new equilibrium state (Reid & 
Gilmore, 05; Pontzen & Governato 12)

Gravity is the 
only force 
between dark 
matter and 
baryons

Massive stars
also create
new metals –
trace past star 
formation



Cored Density Profiles: 
Dark Matter Physics or Baryonic Physics? 

 Measured motions of stars & 
gas + Newton’s Laws give 
cored present-day profiles 
 Could the predicted CDM 

cusped profile have been 
flattened by some process?

 Yes! Rapid injection of 
energy and momentum 
from short-lived massive 
stars can remove large 
fraction of baryons, cause 
new equilibrium state (Reid & 
Gilmore, 05; Pontzen & Governato 12)

Gravity is the 
only force 
between dark 
matter and 
baryons

Massive stars 
also create 
new metals –
trace past star 
formation

 Need large samples of stars in dwarf 
galaxies with both kinematics and chemical 
abundances 



Quiescent Merger History of the Milky Way

 Star counts at intermediate latitudes show two well-defined 
main-sequence turn-offs, corresponding to old, metal-poor 
populations, stellar halo and thick disk (redder, more metal-rich)



Halo 
TO

Jayaraman, Gilmore, RW et al, 2013
cf Gilmore et al 1985; Gilmore & RW 1987

Thick Disc 
Turnoff 

 Spectroscopy  [Fe/H] ~ -1.5 for 
halo, -0.5 thick disk

Derived mean age for thick 
disk stars ~ 10-12Gyr - this 
is lookback time for last 
significant merger event



The Gaia Era – Distances!
 Apparent brightnesses to intrinsic brightnesses
 Double old main sequence turn-off seen in exquisite 

detail in high transverse-velocity stars (Babusiaux et 
al 2018) – stellar halo and (high-vel tail of) thick disk 

-0.5 dex 11Gyr

-1.3 dex 13Gyr

VT>200km/s



The Gaia + SDSS Era
 Very radially anisotropic prograde (mean V-rotation ~ 30km/s) 

component dominates metal-rich ([Fe/H] > -1.7) inner stellar 
halo, interpreted as debris from fairly massive early merger,  
M > 1010M – the Gaia Sausage (Belokurov et al 2018)

 Merger dated to 8-11Gyr ago – epoch of (thick) disk formation

β = 1 − [(σθ
2+ σφ

2)/2σr
2]

Proper motions from SDSS-Gaia DR1

Vrot

Vr



The Gaia Era
 Mildly Retrograde substructure identified in 6D kinematic 

phase space for local halo stars in Gaia DR2 (Koppelman et al 18)

 Debris from a massive (1:5) satellite Gaia Enceladus on a 
retrograde orbit, that heated pre-existing thin disk to form thick 
disk, ~ 10Gyr ago  (Helmi et al 2018; cf RW 2001, RW et al 2006)

 Cross-correlate with 
APOGEE elemental 
abundances – low-alpha 
sequence `accreted’
(Helmi et al 2018)



The Near Future of Galactic Archaeology

 Comprehensive testing of ΛCDM and other types of 
dark matter

 Need simulations of galaxy formation and evolution to 
make predictions

 Need large samples of stars with spectra, giving line-of-
sight velocities and chemical abundances, for each of 
Milky Way, M31 and representative satellite galaxies
 On-going minor merger with Sagittarius dwarf galaxy: 

opportunity for detailed study of reaction of Milky Way disc
 Galactoseismology

 Interaction with Large Magellanic Cloud: causing modes in 
both dark and light matter 



The Near Future of Galactic Archaeology

 Comprehensive testing of ΛCDM and other 
types of dark matter

 Need simulations of galaxy formation and
evolution to make predictions

 Need large samples of stars with spectra, giving 
line-of-sight velocities and chemical abundances, 
for each of Milky Way, M31 and representative 
satellite galaxies

 Prime Focus Spectrograph on the Subaru 
telescope (PI H. Murayama) 



The Near Future of Galactic Archaeology

 Comprehensive testing of ΛCDM and other 
types of dark matter

 Need simulations of galaxy formation and 
evolution to make predictions

 Need large samples of stars with spectra, giving 
line-of-sight velocities and chemical abundances, 
for each of Milky Way, M31 and representative 
satellite galaxies

 Prime Focus Spectrograph on the Subaru 
telescope (PI H. Murayama) 

 Machine-learning to maximise science return
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