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A class of 2d (2,2) supersymmetric gauge theories called

gauged linear sigma models provide explanation of,

or gave birth to

Calabi-Yau/Landau-Ginzburg correspondence

McKay correspondence

Calabi-Yau/Calabi-Yau correspondence
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In these models, the phases are weakly coupled:

the gauge symmetry is completely broken or broken to a finite

subgroup, and the classical analysis is enough to read off

the low energy behavior.

There are interesting models with strongly coupled phases:

a continuous gauge symmetry remains unbroken, and you need

a quantum analysis to find the low energy behavior.



Rgdland model H Tong 2006
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This is an example of a

strong/weak Calabi-Yau/Calabi-Yau correspondence

known also as Pfaffian/Grassmannian correspondence

There are other examples:



Hosono-Takagi model H 2011
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There are dual models where

strong and weak are exchanged.

Constructed from 2d Seiberg duality. H 2011
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The correspondences have mathematical consequences.

For example:

Gromov-Witten (or FJRW) invariants are related by

analytic continuation.

Categories of B-branes are equivalent. e
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We would like to find what they are,

using GLSMs.



In GLSM with gauge group G matter \/ superpotential \/\/

a classical B-brane is specified by

(M/ @ ) & G -equivariant matrix factorization of (V. W )
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However, a classical B-brane may induce instability in quantum theory,

especially when a continuous gauge symmetry remains unbroken.

E.Q. Around phase boundaries

Inside strongly coupled phases

Theories with simple gauge groups

We would like to find a condition on (M, Q ) to define a well behaved

B-brane in the quantum theory.
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This imposes a severe constraint on representations of G

that can be included In M :

For theories with Abelian gauge groups, this reproduces

the grade restriction rule for D-brane transport across

phase boundaries. HHP 2008

We shall continue to call the constraint

grade restriction rule.
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Let us apply this to Rgdland model, Hosono-Takagi model,

and their duals. Eager-H-Knapp-Romo 2014-2024
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Grade restriction rule in strongly coupled phases:
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For each homotopy class of paths (“window”) w

between S »0 and o ,suchas = x

X

let Tw be the subcategory of x x

equivariant matrix factorizations made of

grade restricted representations with respect to w.

S : the one at §<<D.
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The replacement in the phase §V >0 can be done
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