Strong/weak CY/CY correspondence and the grade restriction rule

Kentaro Hori

Based on

KH, David Tong 2006

Manfred Herbst, KH, David Page 2008

KH 2011

KH, Mauricio Romo 2013

Richard Eager, KH, Johanna Knapp, Mauricio Romo 2024

A class of 2d (2,2) supersymmetric gauge theories called **gauged linear sigma models** provide explanation of, or gave birth to

Calabi-Yau/Landau-Ginzburg correspondence

McKay correspondence

Calabi-Yau/Calabi-Yau correspondence

$$G = U(I)$$

$$V = \mathbb{C}(1)^{\oplus 5} \oplus \mathbb{C}(-5)$$

$$\times_{1,-}, \times_{5} \quad P$$

$$W = p f(x_0, x_5)$$

quintic polynomial

$$X^{t} = \{t = 0\} \subset \mathbb{C}_{+}$$

Coulomb branch

CY/LG correspondence

Witten 1993

Landau-Ginzburg orbifold

$$(C_2, f(x))/S^2$$

$$G = U(1)$$

$$V = C(1)^{\otimes 2} \oplus C(-2)$$

$$X = Coulomb branch$$

$$X = \emptyset$$
McKay correspondence

Eguchi-Hanson space

Orbifold

In these models, the phases are weakly coupled:

the gauge symmetry is completely broken or broken to a finite subgroup, and the classical analysis is enough to read off the low energy behavior.

There are interesting models with **strongly coupled phases**:

a continuous gauge symmetry remains unbroken, and you need

a quantum analysis to find the low energy behavior.

$$G = U(z)$$

$$V = (det^{-1})^{\oplus 7} \oplus (C^{2})^{\oplus 7} \Rightarrow (P',...,P^{3}, X_{1},...,X_{7})$$

$$W = \sum_{i,j,k} A_{i,j}^{i,j} P^{k} [X_{i} X_{j}]$$

$$U(2) \rightarrow \{1\}$$

"weakly coupled phase"

3 Coulomb branch

at
$$\begin{cases} S_{\alpha} = 7 \log \left(2 \cos \left(\frac{\pi_{\alpha}}{7} \right) \right) \\ \theta_{\alpha} \equiv \pi_{\alpha} & \alpha = 1, 2, 3. \end{cases}$$

SU(2) unbroken

"strongly coupled phase"

$$S \ll 0$$
: $SU(\iota)$ gauge theory fibered over $\mathbb{CP}^{\iota} > P$:

seven fundamentals with mass matrix $A^{\hat{i}\hat{j}}(r) \xrightarrow{\text{rank}} \{4, 6\}$

$$rank A(e) = 4 : 3 massless \square$$

free theory of composites $[X_1X_2]$, $[X_2X_3]$, $[X_3X_2]$

$$\xrightarrow{\mathsf{I.R.}}$$
 σ -model with target Υ_{A}

Pfaffian variety

$$X_{A} = \{A_{1}(x) = A_{2}(x) = b\} \subset G(2,7)$$
Grassmannian

3
at
$$\begin{cases}
S_{\alpha} = 7 \log \left(2 \cos \left(\frac{\pi q}{7}\right)\right) \\
\theta_{\alpha} = \pi \alpha
\end{cases}$$

$$\alpha = 1, 2, 3.$$

$$Y_A = \{ rkA(p) = 4 \} \subset \mathbb{CP}^C$$
Pfaffian

This is an example of a

strong/weak Calabi-Yau/Calabi-Yau correspondence

known also as Pfaffian/Grassmannian correspondence

There are other examples:

Hosono-Takagi model

$$G = \frac{O(2) \times O(1)}{\{(\pm 1_2, \pm 1)\}}$$

$$\bigvee = \mathbb{C}_{+}(-2)^{\oplus 5} \oplus \mathbb{C}^{2}(1)^{\oplus 5} \ni (p', ..., p_{5}, X_{1}, ..., X_{5})$$

$$M = \sum_{i,j,k} \sum_{i,j}^{k} b_{ik}(x_i x_{j'})$$

$$(X_{i}X_{j}) := X_{i}X_{j}^{1} + X_{i}^{2}X_{j}^{2}$$
write
$$W = \sum_{i,j} S_{i}^{i,j}(\rho) (X_{i}X_{j}) = \sum_{k} \rho^{k} S_{k}(x)$$
mass matrix

$$G \rightarrow \{1\}$$

"weakly coupled phase"

d Coulomb branch

at
$$\begin{cases} S_a = 5 \log \left(2 \cos \left(\frac{\pi_a}{5} \right) \right) \\ \theta_a = \pi_{a+\pi} \quad \alpha = 0, 1, 2. \end{cases}$$

O(2) unbroken

"strongly coupled phase"

$$S \ll 0$$
: $O(2)$ gauge theory fibered over $\mathbb{CP}^4 > P$:

five fundamentals with mass matrix $S^{ij}(p) \xrightarrow{conk} \{3,4,5\}$

$$rankS(p)=4$$
: two vacua

$$rankS(p) = 3 : single vacuum$$

ramified double cover
$$Y_{\varsigma} \longrightarrow Y_{\varsigma}$$

$$Y_s \rightarrow Y_s$$

$$X_{S} = \left\{ S_{s}(x) = \dots = S_{s}(x) = \infty \right\} \subset \frac{\mathbb{CP}^{4} \times \mathbb{CP}^{4}}{\text{exchange}}$$

Reye congruence

3 Coulomb branch

at
$$\begin{cases} S_{\alpha} = 5 \log \left(2 \cos \left(\frac{\pi_{\alpha}}{5} \right) \right) \\ \theta_{\alpha} = \pi_{\alpha} + \pi \quad \alpha = 0, 1, 2. \end{cases}$$

$$Y_S \longrightarrow Y_S = \{ rhS(p) \leq 4 \}$$

$$C_S = \{ rkS(p) = 3 \}$$

There are dual models where

strong and weak are exchanged.

Constructed from 2d Seiberg duality. H 2011

Dual Rødland

$$G' = \frac{US_{p}(4) \times U(1)}{\{(t 1_{4}, t 1)\}}$$

$$\bigvee = \mathbb{C}(-2)^{\oplus 7} \oplus \mathbb{C}^{4}(-1)^{\oplus 7} \oplus \mathbb{C}(2)^{\oplus \binom{7}{2}} \ni (P^{k}; \widehat{X}^{i}; a_{i})$$

$$W' = \sum_{i,j,k} A_k^{ij} P^k a_{ij} + \sum_{i,j} a_{ij} \left[\widehat{x}^i \widehat{x}^j \right]$$

 $[\widetilde{X}^{i}\widetilde{X}^{j}] = \mathcal{J}^{ab}\widetilde{X}_{a}^{i}\widetilde{X}_{b}^{j}$ $a_{ij} = -a_{ji}$

$US_{\rho}(4)$ unbroken

"strongly coupled phase"

3 Coulomb branch

at
$$\begin{cases} S_{\alpha} = 7 \log \left(2 \cos \left(\frac{\pi q}{7} \right) \right) \\ \theta_{\alpha} = \pi \alpha \qquad \alpha = 1, 2, 3. \end{cases}$$

 $G^{V} \rightarrow \{ i \}$ (superpotential needed)

"weakly coupled phase"

d Coulomb branch

at
$$\begin{cases} S_{\alpha} = 7 \log \left(2 \cos \left(\frac{\pi_{\alpha}}{7} \right) \right) \\ \theta_{\alpha} = \pi_{\alpha} \qquad \alpha = 1, 2, 3. \end{cases}$$

$$\begin{cases} A_{ij}(p) + [\hat{X}^i \hat{X}^j] = 0 \end{cases} S \leq Y_A$$

$$\forall k A(p) = 4$$

Dual Hosono-Takagi

$$G' = \frac{SO(4) \times U(1)}{\{(t 14, t 1)\}}$$

$$\bigvee = \mathbb{C}(-2)^{\oplus 5} \oplus \mathbb{C}^{4}(-1)^{\oplus 5} \oplus \mathbb{C}(2)^{\oplus 15} \Rightarrow (P^{k}; \widehat{X}'; S_{5'})$$

$$W' = \sum_{i,j,k} S_{ik}^{ij} P^{k} S_{ij} + \sum_{ij} S_{ij} (\tilde{X}^{i} \tilde{X}^{j})$$

 $[\widetilde{X}^i \widetilde{X}^j] = S^{ab} \widetilde{X}^i_a \widetilde{X}^j_b$ $S_{ij} = S_{ji}$

SO(4) unbroken

"strongly coupled phase"

3 Coulomb branch

at
$$\begin{cases} S_{\alpha} = 5 \log \left(\cos \left(\frac{\pi q}{5} \right) \right) \\ \theta_{\alpha} = \pi \alpha + \pi \qquad \alpha = 0, 1, 2. \end{cases}$$

 $G^{V} \rightarrow \{ i \}$ (superpotential needed)

"weakly coupled phase"

$$\left\{ \begin{array}{l} \operatorname{rank} S = 2, & \sum_{i,j} S_{i,j} S_{i,j} = \delta \end{array} \right\} \subset \mathbb{CP}^{14}$$

$$S_{i,j} = (X_i X_j) \qquad \cong X_S$$

d Coulomb branch

at
$$\begin{cases} S_{\alpha}^{*} = 5 \log \left(\cos \left(\frac{\pi_{\alpha}}{5} \right) \right) \\ \theta_{\alpha}^{*} \equiv \pi_{\alpha} + \pi \qquad \alpha = 0, 1, 2. \end{cases}$$

$$\begin{cases} S^{ij}(p) + (\tilde{x}^i \tilde{x}^j) = 0 \end{cases} / G_0^{r} \cong Y_S$$

$$\begin{cases} rkS(p) \leq 4 \end{cases} = Y_S$$

The correspondences have mathematical consequences.

For example:

Gromov-Witten (or FJRW) invariants are related by analytic continuation.

Categories of B-branes are equivalent.

Categories of B-branes

$$D_p(X^V)$$

$$D^b(Y_A)$$

A path

An equivalence of categories

Another path

Another equivalence of categories

Loops

Autoequivalences of categories

$$D^b(X_A)$$

$$= ($$

$$D^b(Y_A)$$

We would like to find what they are, using GLSMs.

In GLSM with gauge group G, matter V, superpotential W,

a classical B-brane is specified by

$$(M,Q) \sim G$$
 -equivariant matrix factorization of (V,W)

$$M = M^{ev} \oplus M^{sd}$$
 a Z_{l} graded representation of G

$$Q: V \rightarrow End^{ol}(M)$$
 a G -equivariant polynomial function

s.t.
$$Q^2 = W id_M$$

+ an additional grading compatible with \mathbb{Z}_2 .

They form a category $D_G(V, W)$.

However, a classical B-brane may induce instability in quantum theory, especially when a continuous gauge symmetry remains unbroken.

E.g. Around phase boundaries

Inside strongly coupled phases

Theories with simple gauge groups

We would like to find a condition on (M, Q) to define a well behaved

B-brane in the quantum theory.

A proposal

Convergence of hemisphere partition function

HR, Sugishita-Terashima, Honda-Okuda 2013

$$\left\langle \begin{array}{c} \begin{array}{c} \\ \end{array} \right\rangle = \int d^{\sigma} \prod \langle d, \sigma \rangle sinh(\pi(a, \sigma)) \times \\ \\ \begin{array}{c} \\ \end{array} \prod \prod \langle i(Q_{i}, \sigma) + \frac{R_{i}}{2} \rangle \times \\ \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} e^{i\langle t, \sigma \rangle} \cdot tr_{M} \left(e^{\pi i R_{M}} e^{2\pi \sigma} \right) \end{aligned}$$

$$V|_{T\times U(I)} = \bigoplus_{i} \mathbb{C}(Q_i, R_i)$$
 weight decomposition

This imposes a severe constraint on representations of G that can be included in M.

For theories with Abelian gauge groups, this reproduces the **grade restriction rule** for D-brane transport across phase boundaries. HHP 2008

We shall continue to call the constraint grade restriction rule.

Example G simple, V symmetric: { ±Q;};>,ou (o's)

The representation of highest weight λ can be included

in M when
$$\langle \lambda + \beta, \sigma \rangle < \frac{1}{2} \sum_{i > 0} |\langle Q_i, \sigma \rangle|$$
 of ϵ it.

E.g. super-QCD
$$G = US_p(k), V = (\mathbb{C}^k)^{\oplus N} (N \circ LL)$$
;

Consistent with 2d Seiberg duality H2011.

Let us apply this to Rødland model, Hosono-Takagi model,

and their duals. Eager-H-Knapp-Romo 2014-2024

These models have gauge groups of the form
$$G = \frac{H \times U(t)}{\{(\pm 1_{H}, \pm 1)\}}$$

with
$$H = US_p(h)$$
, $O(h)$, $SO(h)$

$$e.y. U(z) = \frac{US_p(x) \times U(x)}{\{(\pm 1, \pm 1)\}}$$

Irreps of such groups is of the form Y(i)

- . Y Young diagram specifying an irrep of HCG
- ' $U(I) \subset G$ acts by $\lambda \mapsto \lambda^{(YI+2i)}$

Grade restriction rule in strongly coupled phases:

Rodland
$$\leq \ll 0$$
: $\mathbb{C}(i)$, $\square(i)$, $\square(i)$

Dual Rodland
$$\zeta^{\vee} \gg \delta + \zeta^{\vee} \ll \delta : \mathbb{C}(i), \square(i), \square(i)$$

Hosono-Takagi
$$\leq \ll 0$$
: $\mathbb{C}_{\pm}(i)$, $\square(i)$, $\square(i)$

Dual Hosono-Takagi
$$\zeta^{\vee} \gg_0 + \zeta^{\vee} \ll_0 : \mathbb{C}(i), \square(i), \square(i)$$

O(2) representation
$$\mathbb{C}_{\mathbf{1}}: \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \mapsto \pm 1$$

$$SO(4)$$
 representation $= \begin{cases} self-dual \\ anti-self-dual \end{cases}$ 2-form

 $\square(-2)$ $\square(-1)$ $\square(1)$ $\square(2)$ \cdots $\square(5)$ $\square(6)$ $\square(7)$ $\square(8)$

 $\square(-2)$ $\square(-1)$ $\square(1)$ $\square(2)$ \cdots $\square(5)$ $\square(6)$ $\square(7)$ $\square(8)$

$$\Box(-2)$$
 $\Box(-1)$ $\Box(-1$

For each homotopy class of paths ("window") w

between
$$\mbox{$>>$}\$$

equivariant matrix factorizations made of

grade restricted representations with respect to w.

$$S$$
: the one at $S \ll 0$.

c.f. Addington-Donovan-Segal 2014

□ □(1) □(2) · · · □(5) □(6)

Want to replace \mathbb{C} by \mathbb{C} (7) in the phase $\mathcal{S} \ll \mathfrak{d}$.

— Can be done with the brane \mathcal{K}

$$\mathbb{C} \xrightarrow{A(x)} \mathbb{C}^{7}(1) \xrightarrow{A(x)} \mathbb{C}^{7}(2) \xrightarrow{A(x)} \mathbb{C}^{7}(3) \xrightarrow{A(x)} \mathbb{C}^{7}(4) \xrightarrow{A(x)} \mathbb{C}^{7}(5) \xrightarrow{A(x)} \mathbb{C}^{7}(5) \xrightarrow{A(x)} \mathbb{C}^{7}(6) \xrightarrow{A(x)} \mathbb{C}^{7}(7)$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$$

$$Q = \sum_{k=1}^{7} \left(p^{k} Q_{k} + A_{k}(x) \overline{Q}^{k} \right) \qquad \left\{ Q_{k}, \overline{Q}^{k} \right\} = \int_{u}^{a}$$

which is empty, $\mathcal{K} \longmapsto \mathcal{O}_{j}$ as

$$\{Q, Q^{\dagger}\} = \|P\|^2 + \|A(x)\|^2 > 0 \text{ if } S \ll 0.$$

$$\square$$
(-2) \square (-1) \square \square (1) \square (2) \cdots \square (5) \square (6) \square (7) \square (8)

Replacement
$$\square \to \square(7)$$
 in the phase $\zeta \ll D$ can be done with $\square \otimes \mathcal{K}$:

$$\square \stackrel{A^{(\kappa)}}{\rightleftharpoons} \square^{\oplus 7} (1) \stackrel{A^{(\kappa)}}{\rightleftharpoons} \square^{\oplus \binom{7}{2}} (2) \stackrel{A^{(\kappa)}}{\rightleftharpoons} \bullet \bullet \bullet \stackrel{A^{(\kappa)}}{\rightleftharpoons} \square (7)$$

which is empty there.

Replacement $\Box(-1) \rightarrow \Box(6)$ in the phase $5 \ll 0$ can be done with $\Box\Box \otimes (-1)$:

$$\square(-1) \stackrel{A(x)}{\rightleftharpoons} \qquad \square^{\oplus 7} \stackrel{A(x)}{\rightleftharpoons} \qquad \square^{\oplus \binom{7}{2}} (1) \stackrel{A(x)}{\rightleftharpoons} \qquad \bullet \qquad \bullet \qquad \stackrel{A(x)}{\rightleftharpoons} \qquad \square(6)$$

which is empty there.

In the phase $5 \gg 0$

GLSM

non-linear 6 -model

$$\nearrow$$
 the structure sheaf of X_A

$$\square \otimes \ltimes \longmapsto S'$$

a rank 2 vector bundle

$$\square \otimes K(-1) \longmapsto S_{ym} S'(-1)$$

rank 3

under the RG flow.

Dual Rødland model

The replacement in the phase $\searrow^{\vee} \gg \mathfrak{o}$ can be done with the branes $\swarrow^{\vee}, \square \otimes \swarrow^{\vee}, \square \otimes \swarrow^{\vee}(-1)$

where
$$\swarrow$$
 is
$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(2)^{\oplus \binom{2i}{2}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \cdots \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(20)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(1)^{\oplus 2i} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

$$\mathbb{C} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)^{\oplus \binom{2i}{3}} \overset{a}{\underset{A(p)+(\widetilde{x}\widetilde{x})}{\rightleftharpoons}} \mathbb{C}(21)$$

which are empty, $K' \longrightarrow 0$, as

$$\{Q, Q^{\dagger}\} = \|a\|^2 + \|A(p) + (\tilde{x}\tilde{x})\|^2 > 0 \text{ if } \leq^{\vee} \gg 0.$$

In the phase 5 ≪ 0

GLSM non-linear 6 -model

$$\square \otimes \mathcal{K}' \longmapsto \mathcal{R}$$
 a rank 4 vector bundle

$$\prod \otimes X'(-1) \longmapsto \bigwedge_{0}^{2} \mathbb{R} \quad (1) \qquad \text{rank 5}$$

under the RG flow.

Seidel-Thomas twists by

Hosono-Takagi model

$$\mathbb{C}_{\pm}(-2)$$
 $\mathbb{C}_{\pm}(-1)$ \mathbb{C}_{\pm} $\mathbb{C}_{\pm}(1)$ $\mathbb{C}_{\pm}(2)$ $\mathbb{C}_{\pm}(3)$ $\mathbb{C}_{\pm}(4)$ $\mathbb{C}_{\pm}(5)$ $\mathbb{C}_{\pm}(6)$ $\mathbb{C}_{\pm}(-2)$ $\mathbb{C}_{\pm}(-2)$ $\mathbb{C}_{\pm}(-1)$ $\mathbb{C}_{\pm}(-1)$

$$C_{\pm}(-2)$$
 $C_{\pm}(-1)$ C_{\pm} $C_{\pm}(1)$ $C_{\pm}(2)$ $C_{\pm}(3)$ $C_{\pm}(4)$ $C_{\pm}(5)$ $C_{\pm}(6)$ $C_{\pm}(-2)$ $C_{\pm}(-1)$ $C_$

$$\mathbb{C}_{\pm}(-2)$$
 $\mathbb{C}_{\pm}(-1)$
 $\mathbb{C}_{\pm}(1)$
 $\mathbb{C}_{\pm}(2)$
 $\mathbb{C}_{\pm}(3)$
 $\mathbb{C}_{\pm}(4)$
 $\mathbb{C}_{\pm}(5)$
 $\mathbb{C}_{\pm}(6)$
 $\square(-2)$
 $\square(-1)$
 \square
 $\square(1)$
 $\square(2)$
 $\square(3)$
 $\square(4)$
 $\square(5)$
 $\square(6)$
 $\square(-2)$
 $\square(-1)$
 \square
 $\square(1)$
 $\square(2)$
 $\square(3)$
 $\square(4)$
 $\square(5)$
 $\square(6)$

$$\mathbb{C}_{\pm}(-2)$$
 $\mathbb{C}_{\pm}(-1)$ \mathbb{C}_{\pm} $\mathbb{C}_{\pm}(1)$ $\mathbb{C}_{\pm}(2)$ $\mathbb{C}_{\pm}(3)$ $\mathbb{C}_{\pm}(4)$ $\mathbb{C}_{\pm}(5)$ $\mathbb{C}_{\pm}(6)$ $\mathbb{C}_{\pm}(-2)$ $\mathbb{C}_{\pm}(-2)$ $\mathbb{C}_{\pm}(-1)$ $\mathbb{C}_{\pm}(-1)$

c.f. Rennemo 2015

Dual Hosono-Takagi

Monodromy

