BCOV cusp forms of lattice polarized K3 surfaces

Shinobu Hosono

Tsinghua-Tokyo workshop on Calabi-Yau at Lake Kawaguchi
Jan.15-19,2024

based on a work with Atsushi Kanazawa ArXiv:2303.04383

§1. BCOV formula of Calabi-Yau manifolds

'92 Cecotti, Fendly, Intligator and Vafa introduced a new index for N=2 SFT in two dimensions,

$$\mathbf{F}_1 = \operatorname{Tr}_{\mathcal{H}}(-1)^F F$$
, $F:$ Ferimion number operator (cf. Witten index $\operatorname{Tr}_{\mathcal{H}}(-1)^F$ is topological.)

This new index is not topological, but it was argued that

- (1) $\mathbf{F}_1 = \mathbf{F}_1(t, \bar{t})$ splits "almost" to a product $F(t)\overline{F(t)}$, where $t_1, ..., t_r$ are holomorphic coordinates of the moduli of N=2 theory.
- (2) The splitting is not complete, but satisfies the **holomorphic anomaly equation**

$$\frac{\partial}{\partial t_i} \frac{\partial}{\partial \bar{t}_j} \mathbf{F}_1 = \text{Tr}(\mathcal{C}_i \mathcal{C}_{\bar{j}}) + \frac{\chi}{12} g_{i\bar{j}}$$

 $C_i = (C_{ib}^a)$ describes the operator algebra of the ground states $g_{i\bar{j}}$: Zamolodchikov metric, $\chi := Tr(-1)^F$

• In case of N=2 σ -models on a Calabi-Yau 3 fold X, using the so-called special Kähler geometry on the (Kähler) moduli, the h.a.e. can be solved as

$$\mathbf{F}_{1} = \frac{1}{2} \log \left\{ e^{(3+h_{X}^{1,1} - \frac{\chi}{12})\mathcal{K}(t,\bar{t})} (\det g_{i\bar{j}})^{-1} |f|^{2} \right\}$$

• If we have a family of (mirror) CY 3 folds, which has a LCSL at o given by $x_1 = \cdots = x_r = 0$.

we have the "topological limit" $\lim_{\bar{t}\to\infty} \mathbf{F}_1(t,\bar{t}) := \lim_{\lambda\to\infty} \mathbf{F}_1(t,\lambda\bar{t})$, where

$$\mathcal{K}(t,\bar{t}) \longrightarrow -\log(w_0(x)\overline{w_0(x)})$$

$$\det(g_{i\bar{j}})^{-1} \longrightarrow \left| \frac{\partial(x_1, ..., x_r)}{\partial(t_1, ..., t_r)} \right|^2$$

Definition. [BCOV formula (of log form) for CY 3 folds]

$$F_1^{top}(t) = \frac{1}{2} \log \left\{ \left(\frac{1}{w_0(x)} \right)^{3 + h_X^{1, 1} - \frac{\chi}{12}} \frac{\partial (x_1, \dots, x_r)}{\partial (t_1, \dots, t_r)} f(x) \right\}$$

f(x): homolorphic functions which we determine by suitable boundary conditions

Bershadsky-Cecotti-Ooguri-Vafa ('93)

Discovery. (**BCOV** '93) (1) If we find a suitable f(x), $F_1^{top}(t)$ gives the generating function of genus one Gromov-Witten invariants of X.

(2) This generalizes to the higher genus functions $\left\{ (F_g^{top}(t), f_g(x)) \right\}_{\geq 2}$ by $\frac{\partial}{\partial \bar{t}_i} \mathbf{F}_g(t, \bar{t}) = \frac{1}{2} \partial_{\bar{t}} S^{jk} \left\{ D_j D_k \mathbf{F}_{g-1}(t, \bar{t}) + \sum_{r+s=g} D_j \mathbf{F}_r(t, \bar{t}) D_k \mathbf{F}_s(t, \bar{t}) \right\}$ with $\partial_{\bar{t}} S^{jk} = e^{2\mathcal{K}(t,\bar{t})} C_{\bar{t}\bar{t}\bar{t}\bar{k}} g^{\bar{j}j} g^{\bar{k}k}$.

- This is still misterious (at least for me) after 30 years since the discovery!
- Also this motivates us studying the moduli spaces of CY manifolds.

The subject of today: BCOV formula $F_1^{top}(t)$ for K3 surfaces

For K3 surfaces, there are no corrections in F_1^{top} from Gromov-Witten invariants. However, we observe nice modular forms from it.

— work with Atsushi Kanazawa ArXiv:2303.04383, Adv.Math(2023).

§2. Lattice polarized K3 surfaces

X: a K3 surface (Kähler, $c_1(T_X) = 0$, $H^1(X, \mathcal{O}_X) = 0$) $(H^2(X, \mathbb{Z}), (*, *)) \simeq L_{K3}$ where $L_{K3} := U^{\oplus 3} \oplus E_8(-1) \oplus E_8(-1)$ $\phi: H^2(X, \mathbb{Z}) \simeq L_{K3}$ is called a marking of K3

Definitions:

Fix a primitive embedding $M \hookrightarrow L_{K3}$ ${}_{(1,\rho-1)} {}_{(3,19)}$

•
$$(X, \phi)$$
: (marked) M -polarized K3 \Leftrightarrow $\phi^{-1}(M) \subset Pic(X)$
 $\phi^{-1}(C_M^{pol}) \subset Amp(X)$

•
$$(X_1, \phi_1) \sim (X_2, \phi_2)$$
 \Leftrightarrow

$$\begin{array}{c}
\exists f: X_1 \to X_2 \text{(isom.)} \\
\text{s.t.} \quad H^2(X_1, \mathbb{Z}) & \stackrel{\sim}{\longleftarrow} \quad H^2(X_2, \mathbb{Z}) \\
\phi_1 \downarrow \chi & & \phi_1 \downarrow \chi \\
L_{K3} & \stackrel{\sim}{\longleftarrow} \quad L_{K3} \\
& \cup & & \cup \\
M & \stackrel{=}{\longrightarrow} \quad M
\end{array}$$

$$\Omega_M = \Omega(M^{\perp}) := \left\{ [w] \in \mathbb{P}(M^{\perp} \otimes \mathbb{C}) | (w.w) = 0, (w, \overline{w}) > 0 \right\}^+$$

Period domain

Moduli space of M-polarized K3 surfaces = $\Omega_M/O(M, L_{K3})$

$$O(M, L_{K3}) = \{ g \in O(L_{K3}) | g|_M = id_M, g \text{ acts on } \Omega_M \}$$

Mirror symmetry (Dolgachev '96, Todorov '96)

When we have the decomposition: $M \oplus M^{\perp} = M \oplus U \oplus \check{M} \subset L_{K3}$,

M-polarized K3 surfaces \longleftrightarrow \check{M} -polarized K3 surfaces

Remark (M-polarizable K3 surfaces, HLOY '01)

A slightly larger group acts on the period domain to obtain

{ isom. classes of M-polarizable K3 surfaces } = $\Omega_M/O(M^{\perp})_+$

if $M \hookrightarrow L_{K3}$ is unique up to isom., where

$$O(M^{\perp})_{+} := \{ g \in O(M^{\perp}) \mid g \text{ acts on } \Omega_{M} \}.$$

6

§3. Settings for the BCOV formula

- 0. Take an embedding $\check{M} \hookrightarrow L_{K3}$ s.t. $\check{M} \oplus \check{M}^{\perp} = \check{M} \oplus U \oplus M \subset L_{K3}$
- 1. Suppose we have a family of M-polarizable K3 surfaces s.t.

$$\begin{array}{ccc}
\check{\mathfrak{X}} & \supset & \check{X}_x \\
\pi \downarrow & & \downarrow \\
\mathcal{M} & \ni & x
\end{array}$$

the associated local system $R^2\pi_*\mathbb{C}_{\check{\mathfrak{X}}}$ has a boundary point o, i.e., a LCSL, which is characterized by a certain local solutions

$$w_0(x), w^{(2)}(x), w_1^{(1)}(x), ..., w_r^{(1)}(x)$$

satisfying a quadratic relation
$$2w_0w^{(2)} + (w^{(1)}, w^{(1)})_M = 0.$$

2. Then we can define the period map by

3. Define the mirror map by introducing the inhomogeneous coordinates

$$\mathcal{P}(x) = [w_0(x), w^{(2)}(x), w_1^{(1)}, \cdots, w_r^{(1)}] = [1, -\frac{1}{2}(t^2)_M, t_1, \cdots, t_r]$$

which describes the isomorphism

Holomorphic functions on the tube domain $T_M := M \otimes \mathbb{R} + \sqrt{-1}C_M$ with natural transformation properties are called automorphic forms of $O(\check{M}^{\perp})_+$.

4. Automorphic form on T_M .

(1) Write the linear action of $g \in O(\check{M}^{\perp})_+$ by

$$g \cdot (1, -\frac{1}{2}(t^2)_M, t_1, \dots, t_r) = (D(g, t), A(g, t), B_1(g, t), \dots, B_r(g, t)).$$

This induces the action $g:(t_1,...,t_r)\mapsto (g\cdot t_1,...,g\cdot t_r)$ by

$$g \cdot t := \frac{B_i(g, t)}{D(g, t)} \quad (i = 1, ..., r) \quad ("Modular action")$$

(2) Homolorphic functions F(t) on T_M satisfying

$$F(g \cdot t) = D(g, t)^w F(t) \mid (g \in O(\check{M}^\perp)_+)$$

are called automorphic forms of weight w.

Remark. The period integral $w_0(x) = w_0(x(t))$ with the mirror map x = x(t) defines an automorphic form of weight one (with possibly a multiplier v(g)), i.e., it holds that

$$w_0(x(g \cdot t)) = v(g) D(g, t) w_0(x(t))$$
 $(|v(g)| = 1)$

Definition (H.K. '23) We define **BCOV formula** by

$$\tau_{\scriptscriptstyle BCOV}(t) := \left\{ \left(\frac{1}{w_0(x)} \right)^{r+1} \frac{\partial(x_1, \cdots, x_r)}{\partial(t_1, \cdots, t_r)} \prod_i dis_i^{r_i} \prod_i x_i^{-1+a_i} \right\}$$

where r_i and a_i are parameters to be fixed by boundary conditions.

If $(\tau_{BCOV}(t))^{-1}$ defines a cusp form on $T_M = M \otimes \mathbb{R} + \sqrt{-1}C_M$, we call it **BCOV cusp form.**

Lemma.

The Jacobian factor $\frac{\partial(x_1, \dots, x_r)}{\partial(t_1, \dots, t_r)}$ has weight r (with possibly a multiplier system) w.r.t. $O(\check{M}^{\perp})_+ (= O(U \oplus M)_+)$.

Proof) Recall that $\Omega_{\check{M}} \simeq M \otimes \mathbb{R} + \sqrt{-1}C_M$ is described by a quadric $\{[u,v,z] \mid 2uv + (z,z)_M = 0\} \subset \mathbb{P}(\check{M}^{\perp} \otimes \mathbb{C}).$

Using this, we can show that

$$\frac{u^r}{2}dt_1 \wedge dt_2 \wedge \dots \wedge dt_r = Res\left(\frac{d\mu_{\mathbb{P}^{r+1}}}{2uv + (z, z)_M}\right)$$
$$= Res\left(\frac{d\mu'_{\mathbb{P}^{r+1}}}{2u'v' + (z', z')_M}\right) = \frac{u'^r}{2}dt'_1 \wedge dt'_2 \wedge \dots \wedge dt'_r$$

Here we can identify $\frac{u'}{u}$ with the automorphic factor D(g,t).

Proposition.

The inverse power $(\tau_{BCOV}(t))^{-1}$ of the BCOV formula

$$\tau_{BCOV} = \left(\frac{1}{w_0(x)}\right)^{r+1} \frac{\partial(x_1, \dots, x_r)}{\partial(t_1, \dots, t_r)} \prod_k dis_k^{r_k} \prod_i x_i^{-1+a_i}$$

has weight one with respect to $O(\check{M}^{\perp})_+$.

Proof) The period integral $w_0(x(t))$ has weight **one** as we remarked.

Since, the Jacobian has weight \mathbf{r} , the weight of $(\tau_{BCOV})^{-1}$ is one. \square

Boundary conditions:

We determine the parameters r_k and a_i by the following reularity conditions:

(1) Conifold regularity \cdots a regularity at the discriminant loci $\{dis_k(x) = 0\}$.

$$ightarrow$$
 it turns out $\left| \mathbf{r}_k = -\frac{1}{2} \right|$ in general

(2) **Orbifold regularity** ··· a regularity from the so-called orbifold points.

$$\rightarrow$$
 case by case

Example 1. (6)
$$\subset \mathbb{P}^3(3,1,1,1)$$
 $(M_2 = \langle 2 \rangle \text{-polarized K3 surface}) \to M_2 \oplus U \oplus \check{M}_2$ $\subset L_{K3}$ $\check{M}_2 = \langle -2 \rangle \oplus U \oplus E_8(-1)^{\oplus 2} \text{-polarizable K3 surfaces}$

(a Picard rank 19 family of K3 surfaces)

1. Picard-Fuchs equation
$$\{\theta_x^3 - 8x(6\theta_x + 5)(6\theta_x + 3)(\theta_x + 1)\}w(x) = 0$$

2. mirror map
$$x(t) = \frac{1}{j(t)}$$
, $w_0(x) = E_4(t)^{\frac{1}{2}}$

3.
$$\left(\frac{1}{w_0(t)}\right)^2 C_{xx} \left(\frac{dx}{dt}\right)^2 = 2$$
, where $C_{xx} = \frac{2}{x^2(1-1728x)}$ is the Griffiths-Yukawa coup.

4.
$$\tau_{BCOV}(t) = \left(\frac{1}{w_0(t)}\right)^2 \left(\frac{dx}{dt}\right) dis_0^{r_0} x^{-1+a}$$
, where $dis_0 = 1 - 1727x$

Form the 3rd relation, we have
$$\frac{dx}{dt} = w_0(x)x(1 - 1728x)^{\frac{1}{2}}$$
.

Using this (and after a little calculations), we find

$$\left| (\tau_{BCOV}(t))^{-1} = \left(\eta(t)^{24} \right)^{\frac{1}{6}} \right| \leftarrow \text{a cusp form!}$$

for
$$r_0 = -\frac{1}{2}$$
 and $a = -\frac{1}{6}$ (justified by the orbifold regularity).

In this (trivial) case, we obtain a **BCOV** cusp form from $\tau_{BCOV(t)}$.

Example 2. $(M_{20} \oplus U \oplus M_{20} \text{ from the list in Lian and Yau '93})$

$$\check{M}_{20} = \langle -20 \rangle \oplus U \oplus E_8(-1)^{\oplus 2}$$
-polarizable K3 surfaces

(a Picard rank 19 family of K3 surfaces)

1. Picard-Fuchs equation

$$\left\{\theta_x^3 - 2x(2\theta_x + 1)(3\theta_x^2 + 3\theta_x + 1) - x^2(4\theta_x + 3)(4\theta_x + 4)(4\theta_x + 5)\right\}w = 0$$

- 2. mirror map $x(t) = q 4q^2 6q^3 + 56q^4 45q^5 + \cdots$ (Thompson series of $\Gamma_0(10)_+$)
- 3. $\left(\frac{1}{w_0(t)}\right)^2 C_{xx} \left(\frac{dx}{dt}\right)^2 = 20$, where $C_{xx} = \frac{20}{x^2(1+4x)(1-16x)}$

$$\Gamma_0(n) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL(2, \mathbb{Z}) \mid c \equiv 0 \bmod n \right\}$$

Proposition.

The conifold and orbifold regularities uniquely determine the parameters

in
$$\tau_{\text{BCOV}}$$
 as $r_0 = r_1 = -\frac{1}{2}$ and $a = -\frac{3}{4}$. Then, we have

$$\tau_{\text{BCOV}}(t) = \left(\frac{1}{w_0(x)}\right)^2 \frac{dx}{dt} dis_0^{r_0} dis_1^{r_1} x^{-1+a} = \frac{1}{\eta_1(t)\eta_2(t)\eta_5(t)\eta_{10}(t)},$$

and $(\tau_{\text{BCOV}}(t))^{-1}$ defines a BCOV cusp form on \mathbb{H}_+ w.r.t. $\Gamma_0(10)_+$.

Here we define $\eta_k(t) := \eta(kt)$.

Similar calculations apply to other cases of the M_{2n} -polarizable K3 surfaces in the list of Lian and Yau ('93). We can <u>verify the following results</u> for all cases in the list, which we state as a conjecture in general:

Conjecture. (H.K. '23)

For families of $M_{2n} = \langle -2n \rangle \oplus U^{\oplus 2} \oplus E_8(-1)^{\oplus 2}$ -polarizable K3 surfaces over \mathbb{P}^1 , we have the BCOV cusp forms

$$(\tau_{BCOV}(t))^{-1} = \eta_{BCOV}(t)$$

with the eta products,

$$\eta_{\text{BCOV}}(t) = \left(\prod_{r|n} \eta_r(t)^{\pm 1}\right)^w,$$

where +1 is taken when $(r, n/r) \neq 1$ and -1 when (r, n/r) = 1.

Supporting evidence. The eta product $\eta_{BCOV}(t)$ defines a cusp form of the genus zero group $\Gamma_0(n)_+$ if $\#\text{cusps}(\Gamma_0(n)_+)=1$.

List of genus zero groups of type $\Gamma_0(n)_+$ (Conway-Norton '79).

n	type	c	n	type	c	n	type	c	$lue{n}$	type	c	n	type	c
1	1A	1	14	14A	1	27	27A	3*	42	42A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	62	62AB	1
2	2A	1	15	15A	1	28	28B	2	44	44AB	2	66	66A	1
3	3A	1	16	16C	3	29	29A	1	45	45A	2	69	69AB	$\boxed{1}$
4	4A	2	17	17A	1	30	30B	1	46	46CD	1	70	70A	1
5	5A	1	18	18B	2	31	31AB	1	47	47AB	1	71	71AB	$\boxed{1}$
6	6A	1	19	19A	1	32	32A	4	49	49Z	4*	78	78A	1
7	7A	$\boxed{1}$	20	20A	2	33	33B	1	50	50A	3*	87	87AB	$\boxed{1}$
8	8A	2	21	21A	1	34	34A	1	51	51A	1	92	92AB	2
9	9A	2	22	22A	1	35	35A	1	54	54A	3*	94	94AB	1
10	10A	1	23	23AB	1	36	36A	4	55	55A	$\begin{bmatrix} 1 \end{bmatrix}$	95	95AB	1
11	11A	1	24	24B	2	38	38A	1	56	56A	2	105	105A	1
12	12A	$\boxed{2}$	25	25A	3*	39	39A	1	59	59AB	1	110	110A	$\boxed{1}$
13	13A	1	26	26A	1	41	41A	1	60	60B	2	119	119AB	1

c := the number of cusps in $\mathbb{H}/\Gamma_0(n)_+$ type: the name for the conjugacy classes of the Monster group

Some selected examples of the eta-products $\eta_{BCOV}(t)$:

$$\underline{\Gamma_0(10)_+} \qquad \eta_{BCOV}(t) = \eta_1(t)\eta_2(t)\eta_5(t)\eta_{10}(t)$$

$$\underline{\Gamma_0(16)_+} \qquad \eta_{BCOV}(t) = \frac{\eta_2(t)^4\eta_4(t)^4\eta_8(t)^4}{\eta_1(t)^4\eta_{16}(t)^4}$$

$$\underline{\Gamma_0(29)_+} \qquad \eta_{BCOV}(t) = \eta_1(t)^2\eta_{29}(t)^2$$

$$\underline{\Gamma_0(36)_+} \qquad \eta_{BCOV}(t) = \frac{\eta_2(t)^4\eta_3(t)^4\eta_6(t)^4\eta_{12}(t)^4\eta_{18}(t)^4}{\eta_1(t)^4\eta_4(t)^4\eta_9(t)^4\eta_{36}(t)^4}$$

$$\underline{\Gamma_0(94)_+} \qquad \eta_{BCOV}(t) = \eta_1(t)\eta_2(t)\eta_{47}(t)\eta_{94}(t)$$

$$\vdots$$

• If we assume the conjecture, K3 differential operators follow:

If we postulate the cojecture, then the following relations follow:

a)
$$w_0(x) = x^{\gamma} \eta_{BCOV}(t)$$

b)
$$\frac{1}{x(t)} = T_n(t) + c_n$$
 (the Thompson series of $\Gamma_0(n)_+$)

for all the genus zero group $\Gamma_0(n)_+$.

1. We determine γ by requiring the q-series expansion

$$w_0(x) = 1 + a_1 q + a_2 q^2 + \cdots$$

2. Substituting the inverse series $q = x + s_1 x + s_2 x^2 + \cdots$ of $1/x(t) = T_n(t) + c_n$ into the above q series of $w_0(x)$, we obtain $w_0(x) = 1 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$ (*)

Searching differential operators which annihilate the series (*), we **find** 3rd order differential operators for all genus one groups $\Gamma_0(n)_+$.

Proposition. (H.K.2023)

Assume the conjecture, then we have K3 differential operators of 3rd order for all genus zero groups of type $\Gamma_0(n)_+$.

An example of K3 differential operator: (for the case $\Gamma_0(36)_+$)

$$\mathcal{D}_{36A} = \theta_x^3 - x(3\theta_x + 1) \left(3\theta_x^2 + 2\theta_x + 1 \right) - 6x^2\theta_x \left(12\theta_x^2 - 3\theta_x - 1 \right)$$

$$+ 2x^3\theta_x \left(284\theta_x^2 + 405\theta_x + 199 \right) + 6x^4\theta_x \left(1156\theta_x^2 + 75\theta_x + 89 \right)$$

$$- 6x^5\theta_x \left(11927\theta_x^2 + 10401\theta_x + 4939 \right)$$

$$+ 18x^6 \left(8968\theta_x^3 + 11586\theta_x^2 + 5960\theta_x + 2553 \right)$$

$$+ 18x^7 \left(11788\theta_x^3 + 14184\theta_x^2 - 5086\theta_x - 19947 \right)$$

$$- 27x^8 \left(30109\theta_x^3 + 44628\theta_x^2 + 7040\theta_x - 6990 \right)$$

$$- 27x^9 \left(19871\theta_x^3 + 39147\theta_x^2 + 9715\theta_x + 29949 \right)$$

$$+ 486x^{10} \left(2664\theta_x^3 + 4503\theta_x^2 + 2623\theta_x + 561 \right)$$

$$+ 486x^{11} \left(2892\theta_x^3 + 6453\theta_x^2 + 5465\theta_x + 1657 \right) + 360126x^{12}(\theta_x + 1)^3 .$$

the number of the cusps is 4, which coincides with the general formula.

§4. Clingher-Doran's family of K3 surfaces

- Clingher and Doran ('12) studied a special quartic $\{f=0\}\subset \mathbb{P}^3$ with $f=y^2zw-4x^3z+3\alpha\,xzw^2+\beta\,zw^3+\gamma\,xz^2w-\frac{1}{2}(\delta\,z^2w^2+w^4).$
- They found that
- (1) When $\gamma \neq 0$, $\{f = 0\}$ is a $\mathbf{\check{M}} = \mathbf{U} \oplus \mathbf{E_8}(-1) \oplus \mathbf{E_7}(-1)$ -polarized K3 surface.
- (2) The parameter space

$$\mathcal{M}_{\mathrm{CD}} := \left\{ [\alpha, \beta, \gamma, \delta] \in \mathbb{WP}^3(2, 3, 5, 6) \mid \gamma \neq 0 \text{ or } \delta \neq 0 \right\}$$

describes a **coase** moduli space of the M-polarized K3 surfaces.

- Note. (i) $\Omega_{\check{M}} = \{[w] \in \mathbb{P}(\check{M}^{\perp} \otimes \mathbb{C}) | (w, w) = 0, (w, \overline{w}) > 0\}^{+}$ $\simeq \mathbb{H}_{2}$ the Siegel upper half space of genus two
 - (ii) $O(\check{M}^{\perp})_{+}/\{\pm I_{5}\} \simeq Sp(4,\mathbb{Z})/\{\pm I_{4}\}$
 - (iii) $\mathcal{P}: \mathcal{M}_{CD} \to \mathbb{H}_2$ (period map)
- cf. Weierstrass normal form: $y^2 = 4x^3 g_2x g_3$ with $[g_2, g_3] \in \mathbb{WP}^1(2, 3)$

Theorem.(Clingher-Doran, '13)

$$\mathcal{P}^{-1}(\tau) = \left[\mathcal{E}_4(\tau), \, \mathcal{E}_6(\tau), \, 2^{12} 3^5 \chi_{10}(\tau), \, 2^{12} 3^6 \chi_{12}(\tau) \right]$$

where \mathcal{E}_4 and \mathcal{E}_6 are genus two Eisenstein series of weight four and six, and χ_{10} and χ_{12} are Igusa's cusp forms of weight ten and twelve, respectively.

Problem: Determine the BCOV cusp form in this case

To calculate the BCOV cusp forms, we need a family of K3 surfaces with a special boundary point (LCSL).

Results:

- 1. We can represent $\{f=0\} \subset \mathbb{P}^3$ by $\{f_{\Delta}=0\} \subset \mathbb{P}_{\Delta}, \Delta$: reflexive polytope.
- 2. Using $\operatorname{Aut}(\mathbb{P}_{\Delta}) \supseteq (\mathbb{C}^*)^3$, we can transform $\{f_{\Delta} = 0\}$ to $\{F_{\Delta} = 0\}$ for which we find Picard-Fuchs equations and a LCSL.
 - -In fact, this is exactly in the frame work of the **extended GKZ system** introduced in HKTY ('93) and HLY ('95).

Proposition. (H.K.'23)

- (1) The **conifold regularity** condition determines the parameters $r_k = -\frac{1}{2}$.
- (2) There are **two** orbifold points A and B. Imposing the **orbifold regularity** for each, we obtain,

$$(\tau_{BCOV}(t))^{-1} = \begin{cases} (\chi_{10}(\tau))^{\frac{1}{10}} & \text{for } A\\ (3\chi_{12}(\tau) + \chi_{10}(\tau)\mathcal{E}_4(\tau)^{\frac{1}{2}})^{\frac{1}{12}} & \text{for } B \end{cases}.$$

Remark.

- (i) When $\tau_{12} \to 0$ in $\tau = \begin{pmatrix} \tau_{11} & \tau_{12} \\ \tau_{12} & \tau_{22} \end{pmatrix}$, $\chi_{10}(\tau) \longrightarrow 0, \quad \chi_{12}(\tau) \longrightarrow \eta(\tau_{11})^{24} \eta(\tau_{22})^{24}$
- (ii)When $\tau_{12} \to 0$, the Picard lattice of \check{M} -polarized K3 surfaces extends to $U \oplus E_8(-1)^{\oplus 2}$, or the orthogonal lattice reduces

$$\check{M}^{\perp} = U^{\oplus 2} \oplus \langle -2 \rangle \longrightarrow U^{\oplus 2}$$

§5. Summary and some other aspects

Summary: BCOV formula of K3 surfaces \rightarrow BCOV cusp forms

$$\tau_{BCOV} = \left(\frac{1}{w_0(x)}\right)^{r+1} \frac{\partial(x_1, \dots, x_r)}{\partial(t_1, \dots, t_r)} \prod_k dis_k^{r_k} \prod_i x_i^{-1+a_i}$$

- 1. (Vector-valued) quasi-automorphic forms follow from $\tau_{BCOV}(t)$:
 - for elliptic curves, we have $(\tau_{BCOV}(\tau))^{-1} = \eta(\tau)^2$ and

$$\frac{\partial}{\partial \tau} \log(\tau_{BCOV}(\tau))^{-1} = \frac{1}{12} E_2(\tau)$$

— for K3 surfaces, we have the propagators

$$S^{a}(t) = \sum_{b} K^{ab} \frac{\partial}{\partial t_{b}} \log(\tau_{BCOV}(t))^{-1}$$

- 2. Conjectured relation to the Ray-Singer analytic torsion.
- 3. $\tau_{BCOV}(t)$ for Calabi-Yau 3 folds and $\{(F_g(t), f_g(t))\}_{g\geq 2}$