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§1. BCOYV formula of Calabi-Yau manifolds

’92 Cecotti, Fendly, Intligator and Vafa introduced a new index for N = 2 SF'T
in two dimensions,

F, =Try(—1)"F, F' : Ferimion number operator

( cf. Witten index Try (—1)% is topological.)

This new index is not topological, but it was argued that

(1) F1 = F(t,t) splits 7almost” to a product F(¢t)F(t), where tq,...,t, are
holomorphic coordinates of the moduli of N = 2 theory.

(2) The spliting is not complete, but satisfies the holomorphic anomaly equation

o 0 X

Ci = (C}",) describes the operator algebra of the ground states
g;7: Zamolodchikov metric, x := Tr(—1)"




e In case of N = 2 o-models on a Calabi-Yau 3 fold X, using the so-called

special Kéhler geometry on the (Kéhler) moduli, the h.a.e. can be solved as
1 1’1_L _
Fl — 5 log {6(3+hX 12)7C(t,ﬂ (det gz}) 1 ’f|2}

e If we have a family of (mirror) CY 3 folds, which has a LCSL at o given by
CIZl:'":ZUr:O,

we have the ”topological limit” lim Fy(¢,t) := )\lim F(t, \t), where
t— 00 — 00

K(t,1) — —log(wo(z)wo(x))

z,...,z) |

O(t1, ntr)

detlg) ™ —

Definiton. [BCOV formula (of log form) for CY 3 folds]

woprn 1 1\ T Ay, )
K (t)210g{<wo<x>) GG f(w)}

f(z): homolorphic functions which we determine by

suitable boundary conditions

Bershadsky-Cecotti-Ooguri-Vafa (’93)




Discovery.(BCOV °93) (1) If we find a suitable f(z), F°P(t) gives
the generating function of genus one Gromov-Witten invariants of X.
(2) This generalizes to the higher genus functions {(F;°P(¢), fg(:c))}>2 by

0 1 :
8—{Fg(t7£) — 56;Sjk{DjDkFg_1(t,z) + Z DJF'/“(taE)DkFS(t)E)}
t r+s=g

with 9;57% = e2K(D Cor g7 gk

e This is still misterious (at least for me) after 30 years since the discovery!

e Also this motivates us studying the moduli spaces of CY manifolds.

The subject of today: BCOV formula F;°(t) for K3 surfaces

. . t
For K3 surfaces, there are no corrections in F;”” from
Gromov-Witten invariants. However, we observe nice modular
forms from it.

— work with Atsushi Kanazawa ArXiv:2303.04383, Adv.Math(2023).



§2. Lattice polarized K3 surfaces
X : a K3 surface ( Kihler, ¢;(Tx) =0, H'(X,0x) = 0)
(H*(X,7Z), (x,%)) ~ Lgs where Lgs := U%> @ Eg(—1) ® Eg(—1)
¢ : H*(X,Z) ~ L3 is called a marking of K3

Definitions:

Fix a primitive embedding M — L3
(Lp—1) (3,19)

L(M) C Pic(X)

¢
e (X,¢): (marked) M-polarized K3 <« o 1(C’p0l) c Amp(X)

Elf : Xl — Xg(isom.)

st H%2(X,,Z) <~ H?*(X,,Z)

%

b1]2 ! b1]2

o (X1,¢01) ~ (X2,92) <

L3 — L3
U U
M _ M




Qe = QM) = {[w] e P(M* ® C)|(w.w) =0, (w,w) > O}Jr

Period domain

Moduli space of
M-polarized K3 surtaces

O(M, Lks) ={g € O(Lks)| g|lpm = idys, g acts on Qpy}

= Qpn/O(M, Lks)

Mirror symmetry (Dolgachev '96, Todorov "96)
When we have the decomposition: M @ Mt=MaoUa®MC Lks ,

M-polarized K3 surfaces <+—  M-polarized K3 surfaces

mirror sym.

Remark (M-polarizable K3 surfaces, HLOY ’01)
A slightly larger group acts on the period domain to obtain
{ isom. classes of M-polarizable K3 surfaces } = Qu,/O(M™*),

if M — Lgs is unique up to isom., where

OM™*); :={ge€O(M™")|gacts on Qp}. 1




§3. Settings for the BCOV formula

0. Take an embedding M < Lgs st. MM =MedU &M C Lis

(L7 —1)(1,1) (1, —1)

1. Suppose we have a family of M-polarizable K3 surfaces s.t.

the associated local system R27T*(C§6 has

U
H><j<

a boundary point o, i.e., a LCSL, which is

characterized by a certain local solutions

wo (), w?) (x), wgl) (), .., w,,(}) () k(ﬁ
satisfying a quadratic relation 71 =0

2wow® + (w®,wm), = 0. AN

3
<«
8 <

W

2. Then we can define the period map by

P M — QM
W N\,
v e P(x) = [wo(z), w® (@), wi (z), -, wM(2)]

:[/ wm;/ wxa/ wm:"'v/ wx]
¢~ 1(e) ¢~ 1(f) ¢~ (71) &1 (vr)

{e, f,V1,..., V- is a basis of M+ =U @ M




3. Define the mirror map by introducing the inhomogeneous coordinates
1
P(@) = [wo(@), w? (@), wr”, - wV) = [1, =5 ()ar, b1, ]
which describes the isomorphism

Qy — MeR++/-1Cy
W W

Plx) ~— (t1,--- 1) : Tube domain coordinates
. o (= mirror map)
O(M~)4 O(M~)4

Holomorphic functions on the tube domain 7y, := M Q R+ /—1C; with

natural transformation properties are called automorphic forms of O(M=).

4. Automorphic form on 7),.
(1)Write the linear action of g € O(M™), by

g- (17_1(t2)M7t17"' 7t7“) — (D(g,t),A(g,t),Bl(g,t),--- 7B7“(g7t))'

2
This induces the action g : (t1,...,t.) — (g - t1,...,9 - t;-) by
Bi 7t . .
g-t:= (9.%) (t=1,...,7)| ("Modular action”) ’

D(g,t)




(2) Homolorphic functions F'(¢t) on T}, satisfying
F(g-t)=D(g,t)"F(t)| (9 €O(M™)4)

are called automorphic forms of weight w.

Remark. The period integral wy(x) = wo(x(t)) with the mirror map
xr = x(t) defines an automorphic form of weight one (with possibly

a multiplier v(g)), i.e., it holds that

wo(z(g -t)) = v(g) D(g,t) wo(z(t)) | (Jv(g)] =1)

Definition (H.K. '23) We define BCOV formula by

" a ) r r —1+a
TBcov(t)::{( 1 >+1 ZZZ fC Hdzs'LHaj 1+z}

wo ()

where r; and a; are parameters to be fixed by boundary conditions.

If (7,0, (t)) " defines a cusp form on Thy = M ® R + /—1Cy, we call it
BCOYV cusp form.

9




Lemma.

A(x1,- - ,x,)
( 1, )

system) w.r.t. O(M™) (= (U D M)y ).

The Jacobian factor has weight r (with possibly a multiplier

Proof) Recall that Q,; ~ M ® R + +/—1C} is describrd by a quadric
{[u,v,2] | 2uv + (2,2)pm =0} C P(M+ ® C).

Using this, we can show that

cl,uprﬂ

2uv + (z, Z)M)
d,U/I/P)r—I—l

2u'v" + (2, 2" ) mr

%dtl Adig A Ndt, = Res<

|

) = %dt’l Adty A ... Adt

= Res(

/

u
Here we can identify — with the automorphic factor D(g,1). []
U

10




Proposition.
The inverse power (7., (t))~" of the BCOV formula,

1 o a(xla ) 337“ —14a;
Tgcov — (wo(a:)) tl, P Hd’LS HQE

has weight one with respect to O(M L)Jr

Proof) The period integral wg(x(t)) has weight one as we remarked.

Since, the Jacobian has weight r, the weight of (TBCO\/)_l is one. []

Boundary conditions:

We determine the parameters r; and a; by the following reularity conditions:

(1) Conifold regularity --- a regularity at the discriminant loci {dis(x) = 0}.

1
— it turns out |r; = —3 in general

(2) Orbifold regularity --- a regularity from the so-called orbifold points.
11

— case by case




Example 1. (6) C P%(3,1,1,1) (My = (2)-polarized K3 surface) — My ® U @ My

. C L
My = (—2) @ U @ Eg(—1)%2-polarizable K3 surfaces e
(a Picard rank 19 family of K3 surfaces)

1. Picard-Fuchs equation {07 — 8z(60, + 5)(60, + 3)(0, + 1)}w(z) = 0
1 1
2. mirror map z(t) = ——, wp(z) = Ey(t)2
J(t)
1 \2 dz .\ 2 2 : :
3. (wo(t)) OM(E) = 2, where C,, :. 22(1 = 1728%) is the Griffiths-Yukawa coup.
1 2 dx e - mzror '
4. Thoov(t) = (wo(t)) (dt)dzso 1T where disg = 1 — 1727z
. dl’ 1
Form the 3rd relation, we have i wo(x)z(1 — 1728x)2.

Using this (and after a little calculations), we find

(TBCOV (t))_l — (77(75)24) ¢ |+ a cusp form!

1 1
for ro = —3 and a = mr (justified by the orbifold regularity).

In this (trivial) case, we obtain a BCOV cusp form from 7., t)- !



Example 2. (M) @ U @ Mg from the list in Lian and Yau ’93)

My = (—20) @ U @ Eg(—1)%*-polarizable K3 surfaces
(a Picard rank 19 family of K3 surfaces)
1. Picard-Fuchs equation
{03 —22(20, +1)(302 + 30, +1) — 2%(40, + 3) (40, + 4)(40, + 5)} w =0
2. mirror map x(t) = q — 4¢° — 6¢° + 56¢* — 45¢° + - - - (Thompson series of I'y(10),)
20
(1 + 4z)(1 — 162)

To(n) ={(2%) € SL(2,Z) | ¢ =0 mod n}

1 2 dzr .\ 2
3. (wo(t)) Cm(E) = 20, where C, =

Proposition.

The conifold and orbifold regularities uniquely determine the parameters

1 3
N Taeoy &S T =71 = —3 and a = —1 Then, we have
2
1 dx 1
T t) = distodisT x—11Te = :
weor® = (g s s MOIAGIAGENIG

and (Tgeoy (t))_1 defines a BCOV cusp form on H, w.r.t. I'g(10).
Here we define . (t) := n(kt). b




Similar calculations apply to other cases of the Ms,-polarizable K3 surfaces

in the list of Lian and Yau (’93). We can verify the following results for all

cases in the list, which we state as a conjecture in general:

Conjecture. (H.K. "23)
For families of My, = (—2n) ® U%? @ Eg(—1)%*-polarizable K3 surfaces
over P!, we have the BCOV cusp forms

(TBC’OV (t))_l = Nlscov (t>
with the eta products,

Necov (t) — H Ty (t)il 3

r|n

where +1 is taken when (r,n/r) # 1 and —1 when (r,n/r) = 1.

Supporting evidence. The eta product 7., (¢) defines a cusp form

of the genus zero group I'g(n), if #cusps(I'g(n)s)=1.

14




List of genus zero groups of type I'y(n). (Conway-Norton ’79).

n |type | c| n | type C n | type C n | type C n type C
1 1A | 1] 14| 14A 1 || 27| 27A | 3% || 42 | 42A 1 62 | 62AB |1
2 2A | 1] 15| 15A 1 || 28 | 28B 2 || 44 | 44AB | 2 66 66A 1
3 A |11 16| 16C 31 29| 29A 1 || 45 | 45A 2 69 | 69AB |1
4 | 4A | 2| 17| 17A 1 || 30| 30B 1 || 46 | 46CD | 1 70 70A 1
5 bA |1 18 | 18B 2 || 31 | 31AB | 1 || 47 | 47TAB | 1 71 | 71AB |1
§ 6A |1 19| 19A 1 || 32 | 32A 4 || 49 | 49Z | 4* || 78 T8A 1
7 7TA |14 20| 20A 2 || 33| 33B 1 || 50| 50A |3*| 87 | 87AB |1
8 8A | 2 21| 21A 1 || 34| 34A 1 || 51| 51A 1 92 | 92AB | 2
9 9A | 2 || 22 | 22A 1 || 35| 35A 1 || 54| H54A | 3% | 94 | 94AB |1
10 | 10A | 1]/ 23| 23AB | 1 | 36 | 36A 4 1| 55 | HSA 1 95 | 95AB |1
11 | 11A | 1| 24 | 24B 2 || 38 | 38A 1 || 56 | 56A 2 || 105 | 105A |1
12| 12A | 2 (] 25| 25A | 3% || 39 | 39A 1 |59 | 59AB | 1 || 110 | 110A |1
13 ] 13A | 1| 26 | 26A 1 || 41 | 41A 1 || 60| 60B 2 || 119 | 119AB | 1

¢ := the number of cusps in H/I'g(n)4
type: the name for the conjugacy classes of the Monster group

15




Some selected examples of the eta-products 7., (%) :

['o(10)4

['o(16)+

['0(29)+

['o(36)+

['o(94)+

Ncov (£) = n1(€)n2(€)ns (¢)n1o(t)

_ e (t)*na(t) ns(t)?
1 (t)*n1e ()

Nscov (t)

Nscov (t) =T (t)27729 (t)2

n2(t)*n3(t)* ne () 12 (t)*mis(t)?

Necov (t) — n (t)4774(t)4779 (t)47736 (t)4

Nscov (t) = M (6)72(E)na7 ()94 (t)

16



e If we assume the conjecture, K3 differential operators follow:

If we postulate the cojecture, then the following relations follow:
a) wo(aj) — xvnBcov (t)

1
b) 2@ =T, (t) + ¢, ( the Thompson series of I'g(n). )

for all the genus zero group I'g(n). .

1. We determine v by requiring the g-series expansion
wo(x) =1+ a1q+ azq® + -+
2. Substituting the inverse series ¢ = x + s1z + Sox? + -+ of

1/x(t) = T,(t) + ¢, into the above ¢ series of wy(x), we obtain

wo(x) =1+ 12 + cox® + c32° + - - - (%)

Searching differential operators which annihilate the series (x), we find 3rd

order differential operators for all genus one groups I'g(n) .

— K3 differential operators 17



Proposition. (H.K.2023)
Assume the conjecture, then we have K3 differential operators of 3rd order

for all genus zero groups of type I'g(n) .

An example of K3 differential operator: (for the case I'3(36))

Dsea =02 — (30, + 1) (305 + 20, + 1) — 62°0,, (1267 — 30, — 1)
+22°0, (284607 + 4056, + 199) + 626, (115662 + 756, + 89)
— 62°0, (1192767 + 104016, + 4939)
+ 182° (89686 + 1158602 + 59600, + 2553)
+ 182" (1178803 + 1418462 — 50860, — 19947)
— 272° (301096 + 4462802 + 70406, — 6990)
— 272" (1987162 + 3914762 + 97156, + 29949)
+ 4862 (26646 + 450307 + 26230, + 561)
+ 486z (2892602 + 645367 + 54650, + 1657) + 36012622 (0, + 1)°.

(-1 0 1 -8 1428 o)
{ Lol (1) (1) 1 > Riemann’s P scheme
1 0 1 ! ! 1
. 1 0 1 1 1 1 ) 18

the number of the cusps is 4, which coincides with the general formula.




§4. Clingher-Doran’s family of K3 surfaces

e Clingher and Doran (’12) studied a special quartic {f = 0} C P°® with
1

f =vy?2w —4z%2 + 3a zzw? + B zw® + v z2iw — 5(5 Zw? + w*).
e They found that
(1) When v # 0, {f =0} is a M = U @ Eg(—1) ® E7(—1)-polarized
K3 surtace.

(2) The parameter space
MCD = {[Oé,ﬁ,’y,(ﬂ = WP3(2737576) ‘ Y 7é Ooro 7é O}

describes a coase moduli space of the M-polarized K3 surfaces.

Note. (i) Q,; = {[w] € P(M* @ C)| (w,w) =0, (w,w) > 0}*
~ Hs the Siegel upper half space of genus two
(i) O(M™)4/{£Is} ~ Sp(4, Z) {11}
(iii) P: Mep — Hs (period map)

19
cf. Weierstrass normal form: y* = 42° — gox — g3 with [gs, g3] € WP'(2,3)



Theorem.(Clingher-Doran, ’13)
73_1(7') = [54(7’), 56(7'), 21235X10(T), 21236)(12(7')]
where &4 and &g are genus two Eisenstein series of weight four and six,

and x19 and x12 are Igusa’s cusp forms of weight ten and twelve, respectively.

Problem: Determine the BCOV cusp form in this case

To calculate the BCOV cusp forms, we need a family of K3 surfaces

with a special boundary point (LCSL).

Results:

1. We can represent {f = 0} C P? by {fa = 0} C Pa, A: reflexive polytope.

2. Using Aut(Pa) 2 (C*)?, we can transform {fa = 0} to {Fa = 0} for
which we find Picard-Fuchs equations and a LCSL.

—In fact, this is exactly in the frame work of the extended GKZ system
introduced in HKTY (’93) and HLY (’95).

20




Proposition. (H.K.’23)
1

(1) The conifold regularity condition determines the parameters r; = =5

(2) There are two orbifold points A and B. Imposing the orbifold regularity

for each, we obtain,

()" = {(Xmm)m LA
(3x12(7) + x10(7)&4(7)2) > for B

(TBCOV

Remark.

(i) When 1710 — 0in 7 = (12 722),

T12 T22

X10(T) — 0, x12(7) — n(711)**n(722)
(ii)When 112 — 0, the Picard lattice of M-polarized K3 surfaces extends to
U @ Eg(—1)%2, or the orthogonal latiice reduces

M+ =U%¢g (-2) — U??

24

21




§5. Summary and some other aspects

Summary: BCOV formula of K3 surfaces — BCOV cusp forms

L1, "

o = () &

tl)

7

s L _
T TTe

1. (Vector-valued) quasi-automorphic forms follow from 7
— for elliptic curves, we have (7., (7))~

t=n(r)? and

0
87_ log( BCOV (

)

1
—E
122

(7)

— for K3 surfaces, we have the propagators

Z Kab

10g Tscov (1))

—1

3. T

BCOV

2. Conjectured relation to the Ray-Singer anlytic torsion.

() for Calabi-Yau 3 folds and {(Fy(t), f¢(?))} >,

BCOV

22
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