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Introduction

Motivation from Physics

Aspinwall-Morrison identified the moduli space of non-linear σ-models on
a K3 surface S with

Grpo
2,2(R4,20) = O(4, 20)/(SO(2) × SO(2) × O(20))

(orthogonal pairs of positive oriented 2-planes in R4,20 � H∗(S ,R))

Geometrically, to a K3 surface with a Kähler class ω, we associate two
2-planes

(⟨Re(σ), Im(σ)⟩R, ⟨Re(eiω), Im(eiω)⟩R) ∈ Grpo
2,2(R4,20).

However, there are “non-geometric points”. (cf. Prof. Ooguri’s talk)

Mirror symmetry does not preserve the geometric points.
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Introduction

Motivation from Math

Two fields with similar interests:

mirror symmetry
duality between complex geometry and symplectic geometry

generalized Calabi-Yau geometry
unification of CY geometry and symplectic geometry

The relation has not been investigated.

Almost the only result in this direction was the study of generalized K3
surfaces (real 4-dim) by Huybrechts, showing the relationship with the
moduli space of SCFT.

Based upon his work, mirror symmetry for K3 surface may be refined. A
conventional formulation has some problems.
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Generalized CY structures

Generalized CY structures (4-dim)

M: C∞-manifold underlying a K3 surface,
A2∗
C

(M) = ⊕2
i=0A2i

C
(M) with Mukai pairing

⟨φ, ψ⟩ = φ2 ∧ ψ2 − φ0 ∧ ψ4 − φ4 ∧ ψ0 ∈ A4
C(M)

where φi denotes the degree i part of φ.

Definiton 2.1 (Hitchin)

A generalized CY structure on M is a closed form φ ∈ A2∗
C

(M) such that

⟨φ, φ⟩ = 0, ⟨φ, φ⟩ > 0
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Generalized CY structures

Generalized CY structures (4-dim)

symplectic form ω, φ = eiω.

⟨eiω, eiω⟩ = ⟨1 + iω − 1
2
ω2, 1 + iω − 1

2
ω2⟩ = 0,

⟨eiω, e−iω⟩ = 2ω2 > 0.

hol 2-form w.r.t complex structure σ, φ = σ.

⟨σ,σ⟩ = 0,

⟨σ,σ⟩ = σ ∧ σ > 0.
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Generalized CY structures

B-field transform

A real closed 2-form B ∈ A2
R(M) is called a B-field. The B-fields acts on

A2∗
C

(M) by the exterior product:

eBφ = (1 + B +
1
2

B ∧ B) ∧ φ.

This action is orthogonal w.r.t. the Mukai pairing

⟨eBφ, eBψ⟩ = ⟨φ, ψ⟩.

For a B-field B and a gCY structure φ, the B-field transform eBφ is also a
gCY structure.
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Generalized CY structures

Classification of gCY structures

Theorem 2.2 (Hitchin)

Let φ be a gCY structure.

(type A) φ0 , 0: ∃ a symplectic form ω, a B-field B,

φ = eB(φ0eiω) = φ0eB+iω

(type B) φ0 = 0: ∃ a hol 2-form σ (w.r.t. a complex str), a B-field B,

φ = eBσ = σ + σ ∧ B (= σ + σ ∧ B0,2)

Definiton 2.3
gCY structures φ, φ′ are isomorphic if ∃ an exact B-field B and
f ∈ Diff∗(M) such that φ = eB f ∗φ′.

Diff∗(M) = Ker(Diff(M)→ O(H2(M,Z))).
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Generalized CY structures

Unification of A- and B-structures

A fascinating aspect of gCY structures is the occurrence of the complex
structure σ and symplectic structure eiω in the same moduli.

Example 2.4 (Hitchin)

For a hol 2-form σ, Re(σ) and Im(σ) are symplectic forms. A family of gCY
structures of type A

φt = te
1
t (Re(σ)+iIm(σ)) = t(1 +

1
t
σ +

1
2t2σ

2) = t + σ

converges, as t → 0, to the gCY structure σ of type B.

The B-fields interpolate between gCY structures of type A and B.
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Generalized CY structures

Kähler structure

For a gCY structure φ, define a distribution Pφ of real 2-planes by

Pφ = ⟨Re(φ), Im(φ)⟩R.

gCY structures φ and φ′ are called orthogonal if Pφ and Pφ′ are pointwise
orthogonal. (stronger than ⟨φ, φ′⟩ = 0.)

Definiton 2.5
A gCY structure φ is called Kähler if ∃ another gCY structure φ′ orthogonal
to φ.

A Kähler structure for φ = σ is of the form φ′ = φ′0eB+iω. The orthogonality
reads

σ ∧ B = σ ∧ ω = 0.

i.e. B is a closed real (1, 1)-form and ±ω is a Kähler form.
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Generalized CY structures

HyperKähler structure

Recall a Kähler form ω on a K3 surface is called hyperKähler if ∃ C ∈ R

2ω2 = Cσ ∧ σ.

Definiton 2.6
A gCY structure φ is hyperKähler if ∃ a Kähler structure φ′ such that

⟨φ, φ⟩ = ⟨φ′, φ′⟩.

⟨eiω, e−iω⟩ = 2ω2, ⟨σ,σ⟩ = σ ∧ σ.

If φ′ is a (hyper)Kähler structure for φ, then eBφ′ is a (hyper)Kähler
structure for eBφ.

A gCY structure is not always (hyper)Kähler.
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Generalized CY structures

Classification of hyperKähler structures

(Details are not important.)

φ = σ: a hyperKähler structure is φ′ = λeB+iω, where B is a closed
(1, 1)-form and ±ω is a hyperKähler form such that

2|λ|2ω2 = σ ∧ σ.

φ = λeiω: a hyperKähler structure is either
φ′ = σ, where ±ω is a hyperKähler form,
φ′ = λ′eB′+iω′ such that

ω ∧ ω′ = ω ∧ B′ = ω′ ∧ B = 0, B′2 = ω2 + ω′2,
|λ|2ω2 = |λ′|2ω′2.

Any hyperKähler structure is a B-field transform of one of the above cases.
There are 3 cases:

(type A, type B), (type B, type A), (type A, type A)

Atsushi Kanazawa (Keio University) MS and Rigid Str of gK3 Tsinghua-Tokyo 11 / 26



Generalized CY structures

Period domains and period maps
NgCY = {Cφ}/ �: moduli space of gCY structures of hyperKähler type

Theorem 2.7 (Huybrechts)

NgCY∪
pergCY

Cφ→[ϕ]
// D̃ = {[φ] ∈ P(H∗(M,C)) | ⟨φ, φ⟩ = 0, ⟨φ, φ⟩ > 0}∪

NK3
perK3

Cσ→[σ]
// D = {[σ] ∈ P(H2(M,C)) | ⟨σ,σ⟩ = 0, ⟨σ,σ⟩ > 0}

pergCY: étale surjective
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Generalized CY structures

Generalized K3 surfaces

Definiton 2.8
A generalized K3 surface is a pair (φ, φ′) of gCY structures such that φ is a
hyperKähler structure for φ′.

A K3 surface Mσ with a hyperKähler form ω is considered as a gK3
surface (eiω, σ).

gK3 surfaces (φ, φ′) and (ψ, ψ′) are called isomorphic if ∃
f ∈ Diff∗(M) and exact B ∈ A2(M) such that

(φ, φ′) = eB f ∗(ψ, ψ′) = (eB f ∗ψ, eB f ∗ψ′).

Isom classes are classified by cohomology classes.
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Generalized CY structures

gK3 surfaces and SCFT moduli space

Theorem 2.9 (Huybrechts)

MHK =
(
MetHK(M)/Diff∗(M)

)
× H2(M,R):

moduli space of the B-field shifts of the hyperKähler metrics

MK3 × H2(M,R) �
� ι //

S 2
&&

MgK3

��

pergK3

(φ,φ′) 7→(P[φ],P[φ′])
// Grpo

2,2(H∗(M,R)) = M(2,2)

S 2×S 2

��
MHK

perHK // Grpo
4 (H∗(M,R)) = M(4,4)

Mirror symmetry for K3 surfaces is an involution of the SCFT moduli space
(Aspinwall-Morrison). Ready to discuss mirror symmetry.
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Mirror Symmetry

K3 surfaces and lattices

Mirror symmetry for a (classical) K3 surface S is very subtle because the
complex and Kähler structures are somewhat mixed in H2(S ,C).

A conventional formulation of mirror symmetry is given in terms of
sublattices of H∗(S ,Z) � U⊕4 ⊕ E⊕2

8 .
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Mirror Symmetry

Mirror symmetry for K3 surfaces

Definiton 3.1 (Dolgachev)

Given M ⊂ ΛK3 = U⊕3 ⊕ E⊕2
8 of sign (1, µ), assume that ∃ N such that

M⊥ = N ⊕ U.

Then the family S of M-pol K3 surfaces and the family S∨ of N-pol K3
surfaces are mirror symmetric.

For generic M-pol K3 surface S and N-pol K3 surface S ∨,

NS ′(S ) � M ⊕ U � T (S ∨), T (S ) � N ⊕ U � NS ′(S ∨),

duality of algebraic and transcendental cycles, Yukawa couplings.
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Mirror Symmetry

Mirror symmetry for quartic surfaces

M = ⟨4⟩ and N = ⟨−4⟩ ⊕ U ⊕ E⊕2
8 , ⟨k⟩ = (Zv, v2 = k)

M-pol K3 surfaces = quartic surfaces S 4 ⊂ CP3.

N-pol K3 surfaces = minimal resolution of{
x4

1 + x4
2 + x4

3 + x4
4 + µx1x2x3x4 = 0

}
/G,

G = {diag[α1, α2, α3, α4] | α4
i =
∏4

j=1 α j = 1} � (Z/4Z)⊕2.
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Mirror Symmetry

Mirror symmetry for K3 surfaces

The conventional formulation have several problems:
1 NS ′(S ) and T (S ) are not symmetric.
2 The assumption M⊥ = N ⊕ U does not hold in general:

singular K3 surface, where T (S ) is of sign (2, 0).

singular K3 surface ??
Kähler 20-dim 0-dim

complex 0-dim 20-dim

M⊥ = N ⊕ U(k)

The problems are caused by H0(S ,Z) ⊕ H4(S ,Z) � U.
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Mirror Symmetry

Algebraic and transcendental lattices of gK3 surface

We define sublattices of H∗(M,Z) reflecting a gCY structure.

Definiton 3.2
The algebraic and transcendental lattices of a gK3 surface X = (φ, φ′) are
defined respectively by

ÑS (X) = {δ ∈ H∗(M,Z) | ⟨δ, [φ′]⟩ = 0},
T̃ (X) = {δ ∈ H∗(M,Z) | ⟨δ, [φ]⟩ = 0}.

ÑS (X) and T̃ (X) are defined on an equal footing.

2 ≤ rank(ÑS (X)), rank(T̃ (X)) ≤ 22.

ÑS (X) ∩ T̃ (X) may be non-trivial.

In general, pt and [M] are no longer “algebraic”.
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RIgidity

Complex and Kähler rigidity

Definiton 4.1
A gK3 surface X = (φ, φ′) is called

complex rigid if φ′ is of type B and rank(ÑS (X)) = 22.

Kähler rigid if φ is of type A and rank(T̃ (X)) = 22.

Theorem 4.2

A complex rigid gK3 surface is of the form eB′(λeB+iω, σ):

Mσ: singular K3 surface

B ∈ H1,1(Mσ,R),

B′ ∈ H2(M,Q),

±ω is a Kähler form w.r.t. σ.
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RIgidity

Example of Kähler rigidity

S : K3 surface, NS (S ) = ZH,H2 = 2n > 0.

v1 = (1, 0,−n), v2 = (0,H, 0) ∈ NS ′(S )

Then

eiH = (1, iH,−n)

= v1 + iv2 ∈ (Zv1 + Zv2)C ⊊ NS ′(S )C.

eiϵH = (1, iϵH,−ϵ2n)

= (1, 0,−ϵ2n) + iϵ(0,H, 0)

= (1, 0, 0) − ϵ2(0, 0, n) + iϵ(0,H, 0) ∈ NS ′(S )C

Cannot continuously deform eiH in such a way that rank(T̃ (eiϵH , σ)) = 22.
Lesson: consider the integral structure of eiω, not ω itself.
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RIgidity

Mukai lattice polarization

Definiton 4.3 (Mukai lattice polarization)

For κ, λ ≥ 2 such that κ + λ = 24, and even lattices K and L of signature
(2, κ − 2) and (2, λ − 2), a pair (X, j) of

a gK3 surface X = (φ, φ′),

a primitive embedding j : K ⊕ L ↪→ H∗(M,Z) such that K ⊂ ÑS (X)
and L ⊂ T̃ (X)

is called a (K, L)-polarized gK3 surface.

“polarization ⊂ lattice polarization ⊂ Mukai lattice polarization”
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RIgidity

Mirror symmetry for gK3 surfaces

Definiton 4.4
The family X of (K, L)-pol gK3 surfaces and the family Y of (L,K)-pol gK3
surfaces are mirror symmetric.

For generic (K, L)-pol gK3 surface X and (L,K)-pol gK3 surface Y,

ÑS (X) � K � T̃ (Y), T̃ (X) � L � ÑS (Y),

duality between algebraic and transcendental cycles w.r.t. gCY structures.
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RIgidity

MS for complex and Kähler rigid gK3 surfaces

For n > 0, consider K = ⟨−2n⟩⊕2 ⊕ U ⊕ E⊕2
8 , L = ⟨2n⟩⊕2.

The family X of (K, L)-pol gK3 surfaces is given by

X = {X = (eB+iω, σ)}

where T (Mσ) = L, and B, ω ∈ NS (Mσ)R. They are singular K3
surfaces with complexified Kähler parameters B + iω ∈ NS (Mσ)C.

The family Y of (L,K)-pol gK3 surfaces has a 19-dim subfamily of K3
surfaces of the form

{Y = (eiH , σ∨)}

where NS (Mσ∨) = ZH such that H2 = 2n.
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RIgidity

MS for complex and Kähler rgid gK3 surfaces

In summary, for K = ⟨−2n⟩⊕2 ⊕ U ⊕ E⊕2
8 , L = ⟨2n⟩⊕2,

(K, L)-pol gK3 surfaces = singular K3 surfaces

(L,K)-pol gK3 surfaces ⊃ pol K3 surfaces (S ,H) with H2 = 2n

(K, L)-pol gK3 (L,K)-pol gK3
A-deform 20-dim 0-dim
B-deform 0-dim 20-dim

The new formulation is compatible with Aspinwall-Morrison’s description of
the moduli spaceM(2,2) = Grpo

2,2(H∗(M,R)) and mirror symmetry.

Atsushi Kanazawa (Keio University) MS and Rigid Str of gK3 Tsinghua-Tokyo 25 / 26



謝謝! Thank you!

謝謝! Thank you!

N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford
Ser. 54 (2003) 281-308.

D. Huybrechts, Generalized Calabi-Yau structures, K3 surfaces, and
B-fields, Int. J. Math. 16 (2005) 13-36.

A. Kanazawa and Y.-W. Fan, Attractor mechanisms of moduli spaces
of Calabi-Yau 3-folds, J. Geom. Phys. 185 (2023) 104724.

A. Kanazawa, Mirror symmetry and rigid structures of generalized K3
surfaces, arXiv:2108.05197. (latest version on my website)

Atsushi Kanazawa (Keio University) MS and Rigid Str of gK3 Tsinghua-Tokyo 26 / 26


	Introduction
	Generalized CY structures
	Mirror Symmetry
	RIgidity
	ｼﾕｼﾕ! Thank you!

