Mirror Symmetry and Rigid Structures of Generalized K3 Surfaces

Atsushi Kanazawa

Keio University

Tsinghua-Tokyo Workshop on Calabi-Yau Fuji Research Institute 2024 January 18th

Motivation from Physics

Aspinwall-Morrison identified the moduli space of non-linear σ -models on a K3 surface S with

$$\operatorname{Gr}_{2,2}^{po}(\mathbb{R}^{4,20}) = O(4,20)/(\operatorname{SO}(2) \times \operatorname{SO}(2) \times O(20))$$

(orthogonal pairs of positive oriented 2-planes in $\mathbb{R}^{4,20} \cong H^*(S,\mathbb{R})$)

Geometrically, to a K3 surface with a Kähler class ω , we associate two 2-planes

$$(\langle \operatorname{Re}(\sigma), \operatorname{Im}(\sigma) \rangle_{\mathbb{R}}, \langle \operatorname{Re}(e^{i\omega}), \operatorname{Im}(e^{i\omega}) \rangle_{\mathbb{R}}) \in \operatorname{Gr}_{2,2}^{po}(\mathbb{R}^{4,20}).$$

However, there are "non-geometric points". (cf. Prof. Ooguri's talk)

Mirror symmetry does not preserve the geometric points.

Atsushi Kanazawa (Keio University)

MS and Rigid Str of gK3

Motivation from Math

Two fields with similar interests:

• mirror symmetry

duality between complex geometry and symplectic geometry

• generalized Calabi-Yau geometry unification of CY geometry and symplectic geometry

The relation has not been investigated.

Almost the only result in this direction was the study of generalized K3 surfaces (real 4-dim) by Huybrechts, showing the relationship with the moduli space of SCFT.

Based upon his work, mirror symmetry for K3 surface may be refined. A conventional formulation has some problems.

Generalized CY structures (4-dim)

M: C^{∞} -manifold underlying a K3 surface, $A^{2*}_{\mathbb{C}}(M) = \bigoplus_{i=0}^{2} A^{2i}_{\mathbb{C}}(M)$ with Mukai pairing

$$\langle \varphi, \psi \rangle = \varphi_2 \wedge \psi_2 - \varphi_0 \wedge \psi_4 - \varphi_4 \wedge \psi_0 \in A^4_{\mathbb{C}}(M)$$

where φ_i denotes the degree *i* part of φ .

Definiton 2.1 (Hitchin)

A generalized CY structure on M is a closed form $\varphi \in A^{2*}_{\mathbb{C}}(M)$ such that

$$\langle \varphi, \varphi \rangle = 0, \quad \langle \varphi, \overline{\varphi} \rangle > 0$$

Generalized CY structures (4-dim)

• symplectic form ω , $\varphi = e^{i\omega}$.

$$\begin{split} \langle e^{i\omega}, e^{i\omega} \rangle &= \langle 1 + i\omega - \frac{1}{2}\omega^2, 1 + i\omega - \frac{1}{2}\omega^2 \rangle = 0, \\ \langle e^{i\omega}, e^{-i\omega} \rangle &= 2\omega^2 > 0. \end{split}$$

• hol 2-form w.r.t complex structure σ , $\varphi = \sigma$.

$$\begin{split} &\langle \sigma, \sigma \rangle = 0, \\ &\langle \sigma, \overline{\sigma} \rangle = \sigma \wedge \overline{\sigma} > 0. \end{split}$$

B-field transform

A real closed 2-form $B \in A^2_{\mathbb{R}}(M)$ is called a *B*-field. The *B*-fields acts on $A^{2*}_{\mathbb{C}}(M)$ by the exterior product:

$$e^{B}\varphi = (1 + B + \frac{1}{2}B \wedge B) \wedge \varphi.$$

This action is orthogonal w.r.t. the Mukai pairing

$$\langle e^B \varphi, e^B \psi \rangle = \langle \varphi, \psi \rangle.$$

For a *B*-field *B* and a gCY structure φ , the *B*-field transform $e^B \varphi$ is also a gCY structure.

Classification of gCY structures

Theorem 2.2 (Hitchin)

Let φ be a gCY structure.

• (type *A*) $\varphi_0 \neq 0$: \exists a symplectic form ω , a *B*-field *B*,

$$\varphi = e^B(\varphi_0 e^{i\omega}) = \varphi_0 e^{B+i\omega}$$

• (type *B*) $\varphi_0 = 0$: \exists a hol 2-form σ (w.r.t. a complex str), a *B*-field *B*,

$$\varphi = e^B \sigma = \sigma + \sigma \wedge B \ (= \sigma + \sigma \wedge B^{0,2})$$

Definiton 2.3

gCY structures φ, φ' are isomorphic if \exists an exact *B*-field *B* and $f \in \text{Diff}_*(M)$ such that $\varphi = e^B f^* \varphi'$.

 $\operatorname{Diff}_*(M) = \operatorname{Ker}(\operatorname{Diff}(M) \to O(H^2(M, \mathbb{Z}))).$

Unification of A- and B-structures

A fascinating aspect of gCY structures is the occurrence of the complex structure σ and symplectic structure $e^{i\omega}$ in the same moduli.

Example 2.4 (Hitchin)

For a hol 2-form σ , Re(σ) and Im(σ) are symplectic forms. A family of gCY structures of type *A*

$$\varphi_t = te^{\frac{1}{t}(\operatorname{Re}(\sigma) + i\operatorname{Im}(\sigma))} = t(1 + \frac{1}{t}\sigma + \frac{1}{2t^2}\sigma^2) = t + \sigma$$

converges, as $t \to 0$, to the gCY structure σ of type *B*.

The *B*-fields interpolate between gCY structures of type *A* and *B*.

Atsushi Kanazawa (Keio University)

Kähler structure

For a gCY structure φ , define a distribution P_{φ} of real 2-planes by

 $P_{\varphi} = \langle \operatorname{Re}(\varphi), \operatorname{Im}(\varphi) \rangle_{\mathbb{R}}.$

gCY structures φ and φ' are called orthogonal if P_{φ} and $P_{\varphi'}$ are pointwise orthogonal. (stronger than $\langle \varphi, \varphi' \rangle = 0$.)

Definiton 2.5

A gCY structure φ is called Kähler if \exists another gCY structure φ' orthogonal to φ .

A Kähler structure for $\varphi = \sigma$ is of the form $\varphi' = \varphi'_0 e^{B+i\omega}$. The orthogonality reads

$$\sigma \wedge B = \sigma \wedge \omega = 0.$$

i.e. *B* is a closed real (1, 1)-form and $\pm \omega$ is a Kähler form.

HyperKähler structure

Recall a Kähler form ω on a K3 surface is called hyperKähler if $\exists C \in \mathbb{R}$

$$2\omega^2 = C\sigma \wedge \overline{\sigma}.$$

Definiton 2.6

A gCY structure φ is hyperKähler if \exists a Kähler structure φ' such that

$$\langle \varphi, \overline{\varphi} \rangle = \langle \varphi', \overline{\varphi'} \rangle.$$

•
$$\langle e^{i\omega}, e^{-i\omega} \rangle = 2\omega^2, \langle \sigma, \overline{\sigma} \rangle = \sigma \wedge \overline{\sigma}.$$

- If φ' is a (hyper)Kähler structure for φ, then e^Bφ' is a (hyper)Kähler structure for e^Bφ.
- A gCY structure is not always (hyper)Kähler.

Classification of hyperKähler structures

(Details are not important.)

• $\varphi = \sigma$: a hyperKähler structure is $\varphi' = \lambda e^{B+i\omega}$, where *B* is a closed (1, 1)-form and $\pm \omega$ is a hyperKähler form such that

$$2|\lambda|^2\omega^2 = \sigma \wedge \overline{\sigma}.$$

• $\varphi = \lambda e^{i\omega}$: a hyperKähler structure is either • $\varphi' = \sigma$, where $\pm \omega$ is a hyperKähler form, • $\varphi' = \lambda' e^{B' + i\omega'}$ such that • $\omega \wedge \omega' = \omega \wedge B' = \omega' \wedge B = 0, B'^2 = \omega^2 + \omega'^2,$ • $|\lambda|^2 \omega^2 = |\lambda'|^2 \omega'^2.$

Any hyperKähler structure is a B-field transform of one of the above cases. There are 3 cases:

(type A, type B), (type B, type A), (type A, type A)

Period domains and period maps

 $\mathfrak{N}_{gCY} = \{\mathbb{C}\varphi\}/\cong:$ moduli space of gCY structures of hyperKähler type Theorem 2.7 (Huybrechts)

$$\begin{split} \mathfrak{N}_{\mathsf{gCY}} & \xrightarrow{\operatorname{per}_{\mathsf{gCY}}} \widetilde{\mathbb{C}} \varphi \to [\phi] \\ \cup & \bigcup \\ \mathfrak{N}_{\mathsf{K3}} & \xrightarrow{\operatorname{per}_{\mathsf{K3}}} \mathfrak{D} = \{ [\sigma] \in \mathbb{P}(H^2(M,\mathbb{C})) \mid \langle \sigma, \sigma \rangle = 0, \langle \sigma, \overline{\sigma} \rangle > 0 \} \end{split}$$

 per_{gCY} : étale surjective

Atsushi Kanazawa (Keio University)

Generalized K3 surfaces

Definiton 2.8

A generalized K3 surface is a pair (φ, φ') of gCY structures such that φ is a hyperKähler structure for φ' .

- A K3 surface M_σ with a hyperKähler form ω is considered as a gK3 surface (e^{iω}, σ).
- gK3 surfaces (φ, φ') and (ψ, ψ') are called isomorphic if ∃
 f ∈ Diff_{*}(*M*) and exact *B* ∈ *A*²(*M*) such that

$$(\varphi,\varphi')=e^Bf^*(\psi,\psi')=(e^Bf^*\psi,e^Bf^*\psi').$$

Isom classes are classified by cohomology classes.

gK3 surfaces and SCFT moduli space

Theorem 2.9 (Huybrechts)

 $\mathfrak{M}_{\mathrm{HK}} = \left(\mathrm{Met}^{\mathrm{HK}}(M)/\mathrm{Diff}_*(M)\right) \times H^2(M,\mathbb{R}):$ moduli space of the *B*-field shifts of the hyperKähler metrics

Mirror symmetry for K3 surfaces is an involution of the SCFT moduli space (Aspinwall-Morrison). Ready to discuss mirror symmetry.

Atsushi Kanazawa (Keio University)

K3 surfaces and lattices

Mirror symmetry for a (classical) K3 surface *S* is very subtle because the complex and Kähler structures are somewhat mixed in $H^2(S, \mathbb{C})$.

A conventional formulation of mirror symmetry is given in terms of sublattices of $H^*(S, \mathbb{Z}) \cong U^{\oplus 4} \oplus E_8^{\oplus 2}$.

Mirror symmetry for K3 surfaces

Definiton 3.1 (Dolgachev)

Given $M \subset \Lambda_{K3} = U^{\oplus 3} \oplus E_8^{\oplus 2}$ of sign $(1, \mu)$, assume that $\exists N$ such that

 $M^{\perp} = N \oplus U.$

Then the family S of M-pol K3 surfaces and the family S^{\vee} of N-pol K3 surfaces are mirror symmetric.

For generic *M*-pol K3 surface *S* and *N*-pol K3 surface S^{\vee} ,

$$NS'(S) \cong M \oplus U \cong T(S^{\vee}), \quad T(S) \cong N \oplus U \cong NS'(S^{\vee}),$$

duality of algebraic and transcendental cycles, Yukawa couplings.

Mirror symmetry for quartic surfaces

- $M = \langle 4 \rangle$ and $N = \langle -4 \rangle \oplus U \oplus E_8^{\oplus 2}$, $\langle k \rangle = (\mathbb{Z}v, v^2 = k)$
 - *M*-pol K3 surfaces = quartic surfaces $S_4 \subset \mathbb{CP}^3$.
 - N-pol K3 surfaces = minimal resolution of

$$\left\{x_1^4 + x_2^4 + x_3^4 + x_4^4 + \mu x_1 x_2 x_3 x_4 = 0\right\}/G,$$

$$G = \{ \operatorname{diag}[\alpha_1, \alpha_2, \alpha_3, \alpha_4] \mid \alpha_i^4 = \prod_{j=1}^4 \alpha_j = 1 \} \cong (\mathbb{Z}/4\mathbb{Z})^{\oplus 2}.$$

Mirror symmetry for K3 surfaces

The conventional formulation have several problems:

- NS'(S) and T(S) are not symmetric.
- 2 The assumption $M^{\perp} = N \oplus U$ does not hold in general:
 - singular K3 surface, where T(S) is of sign (2, 0).

	singular K3 surface	??
Kähler	20-dim	0-dim
complex	0-dim	20-dim

• $M^{\perp} = N \oplus U(k)$

The problems are caused by $H^0(S, \mathbb{Z}) \oplus H^4(S, \mathbb{Z}) \cong U$.

Algebraic and transcendental lattices of gK3 surface

We define sublattices of $H^*(M, \mathbb{Z})$ reflecting a gCY structure.

Definiton 3.2

The algebraic and transcendental lattices of a gK3 surface $X = (\varphi, \varphi')$ are defined respectively by

$$\overline{\text{VS}}(X) = \{ \delta \in H^*(M, \mathbb{Z}) \mid \langle \delta, [\varphi'] \rangle = 0 \},$$

$$\widetilde{T}(X) = \{ \delta \in H^*(M, \mathbb{Z}) \mid \langle \delta, [\varphi] \rangle = 0 \}.$$

• $\widetilde{NS}(X)$ and $\widetilde{T}(X)$ are defined on an equal footing.

 $2 \leq \operatorname{rank}(\widetilde{NS}(X)), \ \operatorname{rank}(\widetilde{T}(X)) \leq 22.$

- $\widetilde{NS}(X) \cap \widetilde{T}(X)$ may be non-trivial.
- In general, pt and [M] are no longer "algebraic".

Complex and Kähler rigidity

Definiton 4.1

A gK3 surface $X = (\varphi, \varphi')$ is called

- complex rigid if φ' is of type *B* and rank($\widetilde{NS}(X)$) = 22.
- Kähler rigid if φ is of type A and rank($\widetilde{T}(X)$) = 22.

Theorem 4.2

A complex rigid gK3 surface is of the form $e^{B'}(\lambda e^{B+i\omega}, \sigma)$:

- M_{σ} : singular K3 surface
- $B \in H^{1,1}(M_{\sigma}, \mathbb{R}),$
- $B' \in H^2(M, \mathbb{Q}),$
- $\pm \omega$ is a Kähler form w.r.t. σ .

Example of Kähler rigidity

S: K3 surface,
$$NS(S) = \mathbb{Z}H, H^2 = 2n > 0.$$

 $v_1 = (1, 0, -n), v_2 = (0, H, 0) \in NS'(S)$

Then

$$e^{iH} = (1, iH, -n)$$

= $v_1 + iv_2 \in (\mathbb{Z}v_1 + \mathbb{Z}v_2)_{\mathbb{C}} \subsetneq NS'(S)_{\mathbb{C}}.$

$$\begin{aligned} e^{i\epsilon H} &= (1, i\epsilon H, -\epsilon^2 n) \\ &= (1, 0, -\epsilon^2 n) + i\epsilon(0, H, 0) \\ &= (1, 0, 0) - \epsilon^2(0, 0, n) + i\epsilon(0, H, 0) \in NS'(S)_{\mathbb{C}} \end{aligned}$$

Cannot continuously deform e^{iH} in such a way that $\operatorname{rank}(\widetilde{T}(e^{i\epsilon H}, \sigma)) = 22$. Lesson: consider the integral structure of $e^{i\omega}$, not ω itself.

Atsushi Kanazawa (Keio University)

Mukai lattice polarization

Definiton 4.3 (Mukai lattice polarization)

For κ , $\lambda \ge 2$ such that $\kappa + \lambda = 24$, and even lattices *K* and *L* of signature $(2, \kappa - 2)$ and $(2, \lambda - 2)$, a pair (X, j) of

• a gK3 surface $X = (\varphi, \varphi')$,

a primitive embedding j: K ⊕ L ↔ H*(M, Z) such that K ⊂ NS(X) and L ⊂ T(X)

is called a (K, L)-polarized gK3 surface.

"polarization \subset lattice polarization \subset Mukai lattice polarization"

Mirror symmetry for gK3 surfaces

Definiton 4.4

The family X of (K, L)-pol gK3 surfaces and the family \mathcal{Y} of (L, K)-pol gK3 surfaces are mirror symmetric.

For generic (K, L)-pol gK3 surface X and (L, K)-pol gK3 surface Y,

$$\widetilde{NS}(X) \cong K \cong \widetilde{T}(Y), \quad \widetilde{T}(X) \cong L \cong \widetilde{NS}(Y),$$

duality between algebraic and transcendental cycles w.r.t. gCY structures.

MS for complex and Kähler rigid gK3 surfaces

For n > 0, consider $K = \langle -2n \rangle^{\oplus 2} \oplus U \oplus E_8^{\oplus 2}$, $L = \langle 2n \rangle^{\oplus 2}$.

• The family X of (K, L)-pol gK3 surfaces is given by

$$\mathcal{X} = \{X = (e^{B+i\omega}, \sigma)\}$$

where $T(M_{\sigma}) = L$, and $B, \omega \in NS(M_{\sigma})_{\mathbb{R}}$. They are singular K3 surfaces with complexified Kähler parameters $B + i\omega \in NS(M_{\sigma})_{\mathbb{C}}$.

• The family \mathcal{Y} of (L, K)-pol gK3 surfaces has a 19-dim subfamily of K3 surfaces of the form

$$\{Y = (e^{iH}, \sigma^{\vee})\}$$

where $NS(M_{\sigma^{\vee}}) = \mathbb{Z}H$ such that $H^2 = 2n$.

MS for complex and Kähler rgid gK3 surfaces

In summary, for $K = \langle -2n \rangle^{\oplus 2} \oplus U \oplus E_8^{\oplus 2}$, $L = \langle 2n \rangle^{\oplus 2}$,

- (*K*, *L*)-pol gK3 surfaces = singular K3 surfaces
- (*L*, *K*)-pol gK3 surfaces \supset pol K3 surfaces (*S*, *H*) with $H^2 = 2n$

	(<i>K</i> , <i>L</i>)-pol gK3	(<i>L</i> , <i>K</i>)-pol gK3
A-deform	20-dim	0-dim
B-deform	0-dim	20-dim

The new formulation is compatible with Aspinwall-Morrison's description of the moduli space $\mathfrak{M}_{(2,2)} = \operatorname{Gr}_{2,2}^{po}(H^*(M,\mathbb{R}))$ and mirror symmetry.

謝謝! Thank you!

- N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281-308.
- D. Huybrechts, Generalized Calabi-Yau structures, K3 surfaces, and *B*-fields, Int. J. Math. 16 (2005) 13-36.
- A. Kanazawa and Y.-W. Fan, Attractor mechanisms of moduli spaces of Calabi-Yau 3-folds, J. Geom. Phys. 185 (2023) 104724.
- A. Kanazawa, Mirror symmetry and rigid structures of generalized K3 surfaces, arXiv:2108.05197. (latest version on my website)