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Holonomy group

The holonomy group Hol(g) is one of tools to study the structure of
a Riemannian manifold (X , g).

Theorem (Berger, 1955)

Let (X , g) be a simply connected Riemannian manifold and it is

irreducible (i.e., (X , g) does not locally decompose into the
product of Riemannian manifolds),

and not locally symmetric (i.e., ∇R 6= 0).

Then the holonomy group Hol(g) is one of the following.

SO(n), U(n), SU(n), Sp(n)Sp(1), Sp(n), G2, Spin(7).
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G2 geometry

G2 :=Aut(O)

={T ∈ GL(O) | T preserves the multiplication of O}.

Identify O = R⊕ ImO = R⊕ R7.
Describe the multiplication of O by φ0∈ Λ3(R7)∗:

R7 × R7 3 (u, v) 7→ φ0(u, v , ·)♯ ∈ R7 (u ⊥ v).

Then

G2 = {g ∈ GL(7,R) | g ∗φ0 = φ0} ⊂ SO(7).

(X 7, g) : G2-manifold
def⇐⇒ Hol(g) ⊂ G2 (=⇒ Ric(g) = 0).

Hol(g) ⊂ G2 =⇒ ∃φ ∈ Ω3(X 7) s.t. ∇φ = 0.

Fixing such a φ ∈ Ω3(X 7), we call (X 7, φ, g) a G2-manifold.

G2 geometry is characterized by a 3-form φ.
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How to understand G2 geometry?

{G2-manifolds}
55

uu

ii

))
{CY 3-manifolds} {3,4-dim. manifolds}

The analogy of Calabi-Yau 3-manifolds （SU(3) ⊂ G2）
Y 6: a Calabi-Yau 3-mfd =⇒ S1 × Y 6：a G2-manifold

We might consider higher dimensional analogues of the theory
for 3,4-dim. manifolds.

Flat connections on 3-mfds (=⇒ Chern-Simons theory)
ASD connections on 4-mfds (=⇒ Donaldson theory）

⇝ G2-instanton
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Calibrated geometry [Harvey-Lawson, 1982]

calibration：a closed differential form φ ∈ Ωk(X n) on a
Riemannian manifold (X n, g) satisfying a certain condition.

calibration ⇒ calibrated submanifolds

Every compact calibrated submanifold is homologically volume
minimizing, and the volume is topological.

Hol(g) (⊂) U(n) SU(n) G2

(X , g) X 2n:Kähler X 2n:Calabi-Yau X 7 : G2-manifold
calibrated N2k :complex A3:associative
submfds submfds submfds

Ln:special Lag. C 4:coassociative
submfds submfds

Red objects have obstructed deformations.

Blue objects have unobstructed deformations.
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Calibrated submanifolds might be useful to understand a manifold.

Gromov-Witten invariant “counts” pseudoholomorphic curves.
⇝ Can we “count” associative submanifolds?

Casson invariant “counts” flat connections.
Donaldson invariant “counts” ASD connections.

⇝ Can we “count” G2-instantons?

Mirror symmetry for Calabi-Yau 3-manifolds
⇝ Mirror symmetry for G2-manifolds?

{G2-manifolds}
55
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{CY 3-manifolds} {3,4-dim. manifolds}
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Mirror symmetry

Strominger–Yau–Zaslow (SYZ conjecture):
mirror symmetry of Calabi-Yau 3-folds would be explained in
terms of special Lagrangian (SL) dual T 3-fibrations (including
singular fibers).

X 6

f   

(X 6)∗

f ∗||
B3

Smooth fibers f −1(b), (f ∗)−1(b) are “dual” SL T 3.

Leung–Yau–Zaslow:
Given a SL dual T 3-fibration, SL submanifolds correspond to
deformed Hermitian Yang–Mills (dHYM) connections (or LYZ
connections?) via the real Fourier–Mukai transform.

Kotaro Kawai (BIMSA) Exceptional holonomy, mirror submanifolds 7 / 21



A similar argument works for G2-manifolds.

Lee–Leung:
Given a coassociative dual T 4-fibration, (co)associative
submanifolds correspond to deformed Donaldson–Thomas
(dDT) connections (or LL connections?) via the real
Fourier–Mukai transform.

calibrated submanifold “mirror”

special Lagrangian dHYM connection
(co)associative dDT connection
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Definition
(X 7, φ, g): a G2-manifold,

(L, h) → X : a smooth complex Hermitian line bundle.

A Hermitian connection ∇ of (L, h) is called a deformed
Donaldson–Thomas (dDT) connection (deformed G2-instanton) if

1

6
F 3
∇ + F∇ ∧ ∗φ = 0,

where F∇ = d∇ ◦ d∇ ∈
√
−1Ω2 is a curvature of ∇.

dDT connection can also be considered as an analogue of the
G2-instanton (DT connection): F∇ ∧ ∗φ = 0.
We expect that dDT connections will have similar properties to
associative submanfiolds and G2-instantons.
Examples of dDT connections:

flat connections (F∇ = 0)
dHYM conn. (mirror of “SL =⇒ associative”)
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{dHYM conn.}
OO

mirror
��

⊂ {dDT conn.}
OO

mirror
��

ii
analogue

)){
SL

submfds

}
⊂

{
associative
submfds

}
{G2-instantons}

analogue of GW inv.?

OO

higher dimensional
gauge theory?

OO

Can we “count” dDT connections to define invariants?

How about the moduli (deformation) theory?
Do dDT connections behave similarly to associative submfds
and G2-instantons?
=⇒Check if they have similar properties.
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Properties of associative submanifolds

(1) The moduli space is 0-dimensional and canonically orientable if
we perturb the G2-structure.

(2) associator equality ⇒ a G2-structure is a calibration, and we can
characterize associative submanifolds by the vanishing of a
tensor, which is useful in deformation theory.

(3) Homologically volume minimizing. The volume is topological.

(4) ciritical points of the Chern-Simons type functional.

(G2-instantons have similar properties to the above.)

Theorem (K.-Yamamoto)

Similar properties to the above also hold for dDT connections.
(The analogy for (4) is proved by Karigiannis-Leung.)

We will state below that the “mirrors” of (2) and (3) hold true.
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“Volume” for connections

(X n, g): a compact connected oriented Riemannian manifold,
(L, h) → X : a smooth complex Hermitian line bundle,
A0 = {Hermitian connections of (L, h)}.

Define the “volume functional” V : A0 → R by

V (∇) :=

∫
X

v(∇)volg ,

v(∇) :=

√
det

(
idTX + (−

√
−1F∇)♯

)
=

√
1 + |F∇|2 +

∣∣∣∣F 2
∇
2!

∣∣∣∣2 + ∣∣∣∣F 3
∇
3!

∣∣∣∣2 + · · ·

V corresponds to the (standard) volume functional for
submanifolds via the real FM.
V is called the Dirac-Born-Infeld (DBI) action in physics.
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Theorem (“Mirror” of associator equality, K.-Yamamoto)

Let (X 7, φ, g) be a G2-manifold. For any ∇ ∈ A0, we have(
1 +

1

2
〈F 2

∇, ∗φ〉
)2

+

∣∣∣∣∗φ ∧ F∇ +
1

6
F 3
∇

∣∣∣∣2 + 1

4
|φ ∧ ∗(F∇)

2|2 = v(∇)2,

In particular, ∣∣∣∣1 + 1

2
〈F 2

∇, ∗φ〉
∣∣∣∣ ≤ v(∇)

for any ∇ ∈ A0. The equality holds if and only if ∇ is dDT.

For any dDT connection ∇, ∇ is a global minimizer of V and
V (∇) is topological.(∫

X

(
1 + 1

2
〈F 2

∇, ∗φ〉
)
volg = Vol(X ) + (−2π2c1(L)

2 ∪ [φ]) · [X ]
)
.

This is the “mirror” of the fact that every compact associative
(calibrated) submanifold is homologically volume minimizing,
and the volume is topological.
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Corollary
Suppose that L is a flat line bundle. Then, any dDT connection is a
flat connection. In particular, the moduli space of dDT connections is
H1(X ,R)/H1(X ,Z).

Let ∇0 be a flat connection and ∇ be any dDT connection. Then,

∫
X

√
1 + |F∇|2 +

∣∣∣∣F 2
∇
2!

∣∣∣∣2 + ∣∣∣∣F 3
∇
3!

∣∣∣∣2volg = V (∇) = V (∇0) =

∫
X

volg ,

which implies that F∇ = 0.
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Minimal connections

(X n, g): a (not necessarily compact)
connected oriented Riemannian manifold,

(L, h) → X : a smooth complex Hermitian line bundle,
A0 := {Hermitian connections of (L, h)}.

Since v(∇) ≥ 1 for ∀∇ ∈ A0, we define the normalized volume
functional V 0 : A0 → [0,∞] by

V 0(∇) =

∫
X

(v(∇)− 1)volg .

We see that
V 0(∇) = 0 ⇐⇒ F∇ = 0.

Definition
Critical points of V 0 (or V ) are called minimal connections.

Every dDT conn is a global minimizer of V =⇒ minimal.
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Proposition

∇ ∈ A0 is minimal ⇐⇒ δ∇F∇ = 0 =⇒ (dδ∇ + δ∇d)︸ ︷︷ ︸
=:∆∇

F∇ = 0.

δ∇ : Ωk → Ωk−1: ∇-dependent differential operator like the
codifferential d∗.

This is a similar characterization to Yang–Mills connections.

To “count” dDT connections, we need to consider the
compactification of the moduli space.
To do this, we should know how bubbles occur. For Yang–Mills
connections, it is known from
(1) Price’s monotonicity formula,
(2) ε-regularity theorem of Uhlenbeck-Nakajima.

Can we show these analogies for minimal connections?
=⇒ (1) is (probably) OK.
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Theorem (K., Monotonicity formula)

(X n, g): an oriented Riemannian manifold, with
dimX = n = 2m + 1 and Ric(g) ≥ 0. Fix p ∈ X.

(L, h) → X: a smooth complex Hermitian line bundle.

Then ∃a = a(n, p, g) ≥ 0, 0 < ∃r ′p < injg (p), ∃ a function
Θ : [0,∞) → R s.t. for any minimal connection ∇

(0, r ′p] → R, ρ 7→ eaρ
2

ρ

∫
Bρ(p)

(v(∇)− 1)volg + 2aΘ(ρ)

is non-decreasing.
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(Outline of the proof)
• We first show the “integration by parts formula” for min. conn ∇.∫

X

(∆∇f1) · f2 · v(∇)volg =

∫
X

f1 · (∆∇f2) · v(∇)volg ,

where f1, f2 ∈ Ω0, one of which is compactly supported.
• Set f1 = 1, f2 = “cut off function” and compute ∆∇f2.
• After some calculations, we see that the monotonically is obtained
if the following is satisfied:

(1) 0 < ∃r ′p < injg (p), ∀τ ∈ [0, r ′p],

n

∫
Bτ (p)

volg ≥ τ
∂

∂τ

∫
Bτ (p)

volg , ωnτ
n ≥

∫
Bτ (p)

volg .

(2) (trG−1
∇ − 1)v(∇)− n + 1 ≥ 0.

(1) is satisfied if Ric(g) ≥ 0 (relative volume comparison theorem).
(2) is an algebraic condition. It is satisfied if dimX = n = 2m + 1.

Kotaro Kawai (BIMSA) Exceptional holonomy, mirror submanifolds 18 / 21



Corollary

Let (L, h) −→ R2m+1 be a (necessarily trivial) smooth complex
Hermitian line bundle over (R2m+1, g0), where g0 is the standard flat
metric.
If ∇ is minimal with V 0(∇) < ∞, then ∇ is flat. (i.e. F∇ = 0.)

(proof) We can take a = 0 and r ′p = ∞ for (R2m+1, g0).
If F∇ 6= 0, ∃p ∈ R2m+1, ∃R0 > 0 s.t.

1

R0

∫
BR0

(p)

(v(∇)− 1)volg0 > 0.

By monotonicity formula, for ∀R ≥ R0,

0 <
1

R0

∫
BR0

(p)

(v(∇)−1)volg ≤ 1

R

∫
BR(p)

(v(∇)−1)volg → 0 (R → ∞),

which is a contradiction.
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Future work

Roughly, we could show

eaρ
2

ρκ

∫
Bρ(p)

(v(∇)− 1)volg

is non-decreasing for κ = 1.
I am not sure κ = 1 the best for the monotonicity. That is, we
might be able to prove the monotonicity for κ > 1.
In fact, for dDT connections on a G2-manifold, (recall that
G2-manifolds are 7-dim.) we can take κ = 13/7 > 1.
For Yang–Mills connections, there is an analogous monotonicity
formula. In that case, κ is taken to be “scaling invariant” (in a
certain sense). There are no such a property for our case.

Can we show “ε-regularity theorem” to study “blowup set”?

Can we construct nontrivial examples of minimal/dDT
connections?
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involved for holding such a great conference.
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