Manifolds with exceptional holonomy and mirrors of their submanifolds

Kotaro Kawai

Beijing Institute of Mathematical Sciences and Applications (BIMSA)

The holonomy group Hol(g) is one of tools to study the structure of a Riemannian manifold (X, g).

Theorem (Berger, 1955)

Let (X,g) be a simply connected Riemannian manifold and it is

- irreducible (i.e., (X,g) does not locally decompose into the product of Riemannian manifolds),
- and not locally symmetric (i.e., $\nabla R \neq 0$).

Then the holonomy group Hol(g) is one of the following.

 $\operatorname{SO}(n)$, $\operatorname{U}(n)$, $\operatorname{SU}(n)$, $\operatorname{Sp}(n)\operatorname{Sp}(1)$, $\operatorname{Sp}(n)$, G_2 , $\operatorname{Spin}(7)$.

G_2 geometry

 $\begin{aligned} \mathcal{G}_2 := &\operatorname{Aut}(\mathbb{O}) \\ &= \{ T \in \operatorname{GL}(\mathbb{O}) \mid T \text{ preserves the multiplication of } \mathbb{O} \}. \\ &\operatorname{Identify} \mathbb{O} = \mathbb{R} \oplus \operatorname{Im} \mathbb{O} = \mathbb{R} \oplus \mathbb{R}^7. \\ &\operatorname{Describe the multiplication of } \mathbb{O} \text{ by } \varphi_0 \in \Lambda^3(\mathbb{R}^7)^*: \end{aligned}$

$$\mathbb{R}^7 \times \mathbb{R}^7 \ni (u, v) \mapsto \varphi_0(u, v, \cdot)^{\sharp} \in \mathbb{R}^7 \qquad (u \perp v).$$

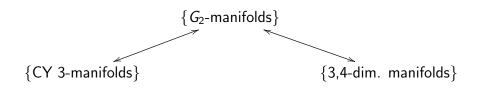
Then

$$G_2 = \{ g \in GL(7, \mathbb{R}) \mid g^* \varphi_0 = \varphi_0 \} \subset \mathrm{SO}(7).$$

• (X^7,g) : G_2 -manifold $\stackrel{def}{\Longrightarrow} \operatorname{Hol}(g) \subset G_2 (\Longrightarrow \operatorname{Ric}(g) = 0).$

- $\operatorname{Hol}(g) \subset G_2 \Longrightarrow \exists \varphi \in \Omega^3(X^7) \text{ s.t. } \nabla \varphi = 0.$
- Fixing such a $\varphi \in \Omega^3(X^7)$, we call (X^7, φ, g) a G_2 -manifold.
- G_2 geometry is characterized by a 3-form φ .

How to understand G_2 geometry?



- The analogy of Calabi-Yau 3-manifolds $(SU(3) \subset G_2)$ Y^6 : a Calabi-Yau 3-mfd $\implies S^1 \times Y^6$: a G_2 -manifold
- We might consider higher dimensional analogues of the theory for 3,4-dim. manifolds.
 - Flat connections on 3-mfds (⇒ Chern-Simons theory)
 - ASD connections on 4-mfds (\Longrightarrow Donaldson theory)
 - \rightsquigarrow G₂-instanton

Calibrated geometry [Harvey-Lawson, 1982]

- calibration : a closed differential form φ ∈ Ω^k(Xⁿ) on a Riemannian manifold (Xⁿ, g) satisfying a certain condition.
- calibration \Rightarrow calibrated submanifolds
 - Every compact calibrated submanifold is homologically volume minimizing, and the volume is topological.

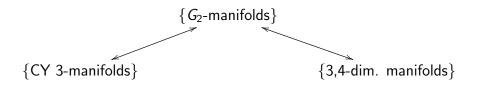
$Hol(g)$ (\subset)	U(<i>n</i>)	SU(<i>n</i>)	<i>G</i> ₂
(X,g)	X ²ⁿ :Kähler	X ²ⁿ :Calabi-Yau	X^7 : G_2 -manifold
calibrated	<i>N</i> ^{2k} :complex		A ³ :associative
submfds	submfds		submfds
		L ⁿ :special Lag.	C^4 :coassociative
		submfds	submfds

- Red objects have obstructed deformations.
- Blue objects have unobstructed deformations.

Calibrated submanifolds might be useful to understand a manifold.

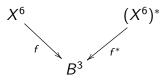
- Gromov-Witten invariant "counts" pseudoholomorphic curves.
 → Can we "count" associative submanifolds?
- Casson invariant "counts" flat connections.
 Donaldson invariant "counts" ASD connections.
 ~> Can we "count" G₂-instantons?
- Mirror symmetry for Calabi-Yau 3-manifolds

 — Mirror symmetry for G₂-manifolds?



Mirror symmetry

 Strominger-Yau-Zaslow (SYZ conjecture): mirror symmetry of Calabi-Yau 3-folds would be explained in terms of special Lagrangian (SL) dual T³-fibrations (including singular fibers).



Smooth fibers $f^{-1}(b), (f^*)^{-1}(b)$ are "dual" SL T^3 .

 Leung-Yau-Zaslow: Given a SL dual T³-fibration, SL submanifolds correspond to deformed Hermitian Yang-Mills (dHYM) connections (or LYZ connections?) via the real Fourier-Mukai transform.

A B M A B M

A similar argument works for G_2 -manifolds.

• Lee–Leung:

Given a coassociative dual T^4 -fibration, (co)associative submanifolds correspond to deformed Donaldson–Thomas (dDT) connections (or LL connections?) via the real Fourier–Mukai transform.

calibrated submanifold	"mirror"	
special Lagrangian	dHYM connection	
(co)associative	dDT connection	

Definition

• (X^7, φ, g) : a G_2 -manifold,

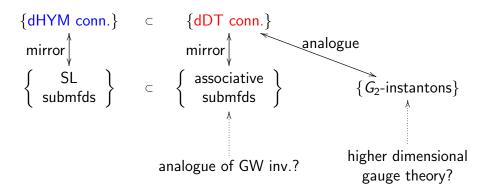
• $(L, h) \rightarrow X$: a smooth complex Hermitian line bundle.

A Hermitian connection ∇ of (L, h) is called a deformed Donaldson-Thomas (dDT) connection (deformed G_2 -instanton) if

$$\frac{1}{6}F_{\nabla}^{3}+F_{\nabla}\wedge\ast\varphi=0,$$

where $F_{\nabla} = d_{\nabla} \circ d_{\nabla} \in \sqrt{-1}\Omega^2$ is a curvature of ∇ .

- dDT connection can also be considered as an analogue of the G_2 -instanton (DT connection): $F_{\nabla} \wedge *\varphi = 0$.
- We expect that dDT connections will have similar properties to associative submanfiolds and *G*₂-instantons.
- Examples of dDT connections:
 - flat connections ($F_{\nabla} = 0$)
 - dHYM conn. (mirror of "SL \implies associative"), (\equiv)



• Can we "count" dDT connections to define invariants?

- How about the moduli (deformation) theory?
- Do dDT connections behave similarly to associative submfds and *G*₂-instantons?

 \implies Check if they have similar properties.

Properties of associative submanifolds

- (1) The moduli space is 0-dimensional and canonically orientable if we perturb the G_2 -structure.
- (2) associator equality \Rightarrow a G_2 -structure is a calibration, and we can characterize associative submanifolds by the vanishing of a tensor, which is useful in deformation theory.
- (3) Homologically volume minimizing. The volume is topological.
- (4) ciritical points of the Chern-Simons type functional.

(G_2 -instantons have similar properties to the above.)

Theorem (K.-Yamamoto)

Similar properties to the above also hold for dDT connections. (The analogy for (4) is proved by Karigiannis-Leung.)

We will state below that the "mirrors" of (2) and (3) hold true.

"Volume" for connections

- (X^n, g) : a compact connected oriented Riemannian manifold,
- $(L, h) \rightarrow X$: a smooth complex Hermitian line bundle,
- $\mathcal{A}_0 = \{ \text{Hermitian connections of } (L, h) \}.$

Define the "volume functional" $V:\mathcal{A}_0\to\mathbb{R}$ by

$$V(\nabla) := \int_X v(\nabla) \operatorname{vol}_g,$$

$$v(\nabla) := \sqrt{\det\left(\operatorname{id}_{TX} + (-\sqrt{-1}F_{\nabla})^{\sharp}\right)}$$

$$= \sqrt{1 + |F_{\nabla}|^2 + \left|\frac{F_{\nabla}^2}{2!}\right|^2 + \left|\frac{F_{\nabla}^3}{3!}\right|^2 + \cdots}$$

- V corresponds to the (standard) volume functional for submanifolds via the real FM.
- V is called the Dirac-Born-Infeld (DBI) action in physics.

Theorem ("Mirror" of associator equality, K.-Yamamoto) Let (X^7, φ, g) be a G_2 -manifold. For any $\nabla \in \mathcal{A}_0$, we have $\left(1 + \frac{1}{2} \langle F_{\nabla}^2, *\varphi \rangle\right)^2 + \left| *\varphi \wedge F_{\nabla} + \frac{1}{6} F_{\nabla}^3 \right|^2 + \frac{1}{4} |\varphi \wedge *(F_{\nabla})^2|^2 = v(\nabla)^2,$

In particular,

$$\left|1+rac{1}{2}\langle F_{
abla}^2,st arphi
angle
ight|\leq m{v}(
abla)$$

for any $\nabla\in\mathcal{A}_0.$ The equality holds if and only if ∇ is dDT.

- For any dDT connection ∇ , ∇ is a global minimizer of V and $V(\nabla)$ is topological. $\left(\int_X \left(1 + \frac{1}{2}\langle F_{\nabla}^2, *\varphi\rangle\right) \operatorname{vol}_g = \operatorname{Vol}(X) + \left(-2\pi^2 c_1(L)^2 \cup [\varphi]\right) \cdot [X]\right).$
- This is the "mirror" of the fact that every compact associative (calibrated) submanifold is homologically volume minimizing, and the volume is topological.

Corollary

Suppose that L is a flat line bundle. Then, any dDT connection is a flat connection. In particular, the moduli space of dDT connections is $H^1(X, \mathbb{R})/H^1(X, \mathbb{Z})$.

Let ∇_0 be a flat connection and ∇ be any dDT connection. Then,

$$\int_X \sqrt{1+|F_\nabla|^2+\left|\frac{F_\nabla^2}{2!}\right|^2+\left|\frac{F_\nabla^3}{3!}\right|^2} \operatorname{vol}_g = V(\nabla) = V(\nabla_0) = \int_X \operatorname{vol}_g,$$

which implies that $F_{\nabla} = 0$.

Minimal connections

$$V^0(
abla) = \int_X (v(
abla) - 1) \mathrm{vol}_g.$$

We see that

$$V^0(
abla)=0 \qquad \Longleftrightarrow \qquad F_
abla=0.$$

Definition

Critical points of V^0 (or V) are called minimal connections.

• Every dDT conn is a global minimizer of $V \Longrightarrow$ minimal,

Kotaro Kawai (BIMSA)

$$\nabla \in \mathcal{A}_0 \text{ is minimal} \iff \delta_{\nabla} F_{\nabla} = 0 \Longrightarrow \underbrace{(d\delta_{\nabla} + \delta_{\nabla} d)}_{=:\Delta_{\nabla}} F_{\nabla} = 0.$$

- δ_∇ : Ω^k → Ω^{k-1}: ∇-dependent differential operator like the codifferential d^{*}.
- This is a similar characterization to Yang-Mills connections.
- To "count" dDT connections, we need to consider the compactification of the moduli space.
- To do this, we should know how bubbles occur. For Yang-Mills connections, it is known from
 - (1) Price's monotonicity formula,
 - (2) ε -regularity theorem of Uhlenbeck-Nakajima.

Can we show these analogies for minimal connections? \implies (1) is (probably) OK.

Theorem (K., Monotonicity formula)

(Xⁿ,g): an oriented Riemannian manifold, with dim X = n = 2m + 1 and Ric(g) ≥ 0. Fix p ∈ X.
(L, h) → X: a smooth complex Hermitian line bundle.
Then ∃a = a(n, p, g) ≥ 0, 0 < ∃r'_p < inj_g(p), ∃ a function Θ : [0,∞) → ℝ s.t. for any minimal connection ∇

$$(0, r'_{\rho}] \to \mathbb{R}, \qquad \rho \mapsto \frac{e^{a\rho^2}}{\rho} \int_{B_{\rho}(\rho)} (v(\nabla) - 1) \mathrm{vol}_g + 2a\Theta(\rho)$$

is non-decreasing.

(Outline of the proof)

• We first show the "integration by parts formula" for min. conn $\nabla.$

$$\int_X (\Delta_\nabla f_1) \cdot f_2 \cdot v(\nabla) \mathrm{vol}_g = \int_X f_1 \cdot (\Delta_\nabla f_2) \cdot v(\nabla) \mathrm{vol}_g,$$

where $f_1, f_2 \in \Omega^0$, one of which is compactly supported.

- Set $f_1 = 1$, $f_2 =$ "cut off function" and compute $\Delta_{\nabla} f_2$.
- After some calculations, we see that the monotonically is obtained if the following is satisfied:

(1)
$$0 < \exists r'_{p} < \operatorname{inj}_{g}(p), \forall \tau \in [0, r'_{p}],$$

$$n\int_{B_{\tau}(p)} \operatorname{vol}_{g} \geq \tau \frac{\partial}{\partial \tau} \int_{B_{\tau}(p)} \operatorname{vol}_{g}, \qquad \omega_{n} \tau^{n} \geq \int_{B_{\tau}(p)} \operatorname{vol}_{g}.$$

(2) (tr G_∇⁻¹ - 1)v(∇) - n + 1 ≥ 0.
(1) is satisfied if Ric(g) ≥ 0 (relative volume comparison theorem).
(2) is an algebraic condition. It is satisfied if dim X_∂= n = 2m + 1. 2000

Corollary

Let $(L, h) \longrightarrow \mathbb{R}^{2m+1}$ be a (necessarily trivial) smooth complex Hermitian line bundle over (\mathbb{R}^{2m+1}, g_0) , where g_0 is the standard flat metric.

If ∇ is minimal with $V^0(\nabla) < \infty$, then ∇ is flat. (i.e. $F_{\nabla} = 0$.)

(proof) We can take a = 0 and $r'_p = \infty$ for (\mathbb{R}^{2m+1}, g_0) . If $F_{\nabla} \neq 0$, $\exists p \in \mathbb{R}^{2m+1}, \exists R_0 > 0$ s.t.

$$\frac{1}{R_0}\int_{B_{R_0}(\rho)}(\nu(\nabla)-1)\mathrm{vol}_{g_0}>0.$$

By monotonicity formula, for $\forall R \geq R_0$,

$$0 < \frac{1}{R_0} \int_{B_{R_0}(p)} (v(\nabla) - 1) \operatorname{vol}_g \le \frac{1}{R} \int_{B_R(p)} (v(\nabla) - 1) \operatorname{vol}_g \to 0 \ (R \to \infty)$$

which is a contradiction.

Kotaro Kawai (BIMSA)

Future work

• Roughly, we could show

$$rac{e^{a
ho^2}}{
ho^\kappa}\int_{B_
ho(
ho)}(v(
abla)-1)\mathrm{vol}_g$$

is non-decreasing for $\kappa = 1$.

- I am not sure $\kappa = 1$ the best for the monotonicity. That is, we might be able to prove the monotonicity for $\kappa > 1$.
- In fact, for dDT connections on a G_2 -manifold, (recall that G_2 -manifolds are 7-dim.) we can take $\kappa = 13/7 > 1$.
- For Yang–Mills connections, there is an analogous monotonicity formula. In that case, κ is taken to be "scaling invariant" (in a certain sense). There are no such a property for our case.
- Can we show " ε -regularity theorem" to study "blowup set"?
- Can we construct nontrivial examples of minimal/dDT connections?

I would like to thank the organizers and everyone involved for holding such a great conference.

Thank you so much!