Complex Hyperbolic Structures for Moduli Spaces of Calabi-Yau Varieties

Chenglong Yu

YMSC, Tsinghua University

(joint with Zhiwei Zheng)

Tsinghua-Tokyo workshop on Calabi-Yau

Jan 16th

Moduli spaces and locally symmetric spaces

Many locally symmetric spaces have modular interpretations. Let \mathcal{M} be moduli of certain algebraic varieties, \mathbb{D} Hermitian symmetric domain and $\Gamma \subset \operatorname{Aut}(\mathbb{D})$ discrete lattice acting on \mathbb{D}. The period map induces

$$
\mathcal{M} \longleftrightarrow \Gamma \backslash \mathbb{D}
$$

Famous examples include:
$1 \mathcal{M}$: moduli of polarized abelian varieties, \mathbb{D} : Siegel upper half space
$2 \mathcal{M}$: moduli of polarized $K 3$ surfaces, \mathbb{D} : Type-IV domain

Complex hyperbolic balls

Let h be a Hermitian form on vector space V with signature $(1, n)$. The complex hyperbolic ball of dimension n is

$$
\mathbb{B}^{n}=\{v \in \mathbb{P}(V) \mid h(v, v)>0\}
$$

Examples of moduli spaces with ball structure:
1 (Deligne-Mostow) Moduli of $(n+3)$-points on \mathbb{P}^{1}
2 (Allcock-Carlson-Toledo) Moduli of cubic surfaces and cubic threefolds

3 (Kondō) Moduli of genus 3 curves and genus 4 curves.

Cyclic cover of projective line

Euler, Riemann, Schwarz, Picard, ... Shimura, Deligne-Mostow, Thurston: consider cyclic covers of \mathbb{P}^{1}

$$
C_{\mu}: y^{d}=\left(x-x_{1}\right)^{a_{1}} \cdots\left(x-x_{n+3}\right)^{a_{n+3}}
$$

with $0<\mu_{i}=\frac{a_{i}}{d}<1$ and $\sum_{i} \mu_{i} \in \mathbb{Z}$. The cyclic group $\mathbb{Z} / d \mathbb{Z}$ acts on C_{μ} and decomposes $H^{1}\left(C_{\mu}\right)$ by characters.

- When $\sum \mu_{i}=2, H_{\chi}^{1}\left(C_{\mu}\right)$ has hermitian form with $\operatorname{sign}(1, n)$.

■ Moduli of such C_{μ} is $\mathcal{M}=\operatorname{PSL}(2, \mathbb{C}) \backslash\left(\left(\mathbb{P}^{1}\right)^{n+3}\right.$ - diagonals $)$
■ Monodromy representation $\rho: \pi_{1}(\mathcal{M}) \rightarrow \operatorname{PU}(1, n)$,

$$
\begin{gathered}
\Gamma_{\mu}=\operatorname{Im}(\rho) \\
■ \overline{\mathcal{M}} \cong \overline{\Gamma \backslash \mathbb{B}^{n}}{ }^{B B}
\end{gathered}
$$

Connection with hypergeometric functions when $n=1$

- Euler introduced hypergeometric functions

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & b \\
c
\end{array} ; x\right]=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{x^{k}}{k!}, \quad|x|<1
$$

where $(a)_{k}=a(a-1) \cdots(a-k+1)$.

- It satisfies a $2^{\text {nd }}$-order differential equation

$$
x(1-x) \frac{d^{2} y}{d x^{2}}+(c-(a+b+1) x) \frac{d y}{d x}-a b y=0
$$

- It has an integral representation

$$
\begin{aligned}
{ }_{2} F_{1}\left[\begin{array}{cc}
a b \\
c & ; x
\end{array}\right] & =\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} z^{a-1}(1-z)^{c-a-1}(1-z x)^{-b} d z \\
& =\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{1}^{\infty} z^{b-c}(z-1)^{c-a-1}(z-x)^{-b} d z
\end{aligned}
$$

Monodromy representation

- The differential equation has three regular singular points $\{0,1, \infty\}$ on the Riemann sphere \mathbb{P}^{1}.
- The analytic continuation of two linearly independent solutions F_{1}, F_{2} gives rise to a representation

$$
\rho: \pi_{1}\left(\mathbb{P}^{1}-\{0,1, \infty\}\right) \rightarrow \operatorname{PGL}(2, \mathbb{C})
$$

- Schwarz found that the two solutions are algebraic functions iff $\Gamma=\operatorname{Im}(\rho)$ is finite.
- Schwarz also showed that the inverse of $\frac{F_{1}}{F_{2}}$ being single-valued is equivalent to Γ being discrete.

Discreteness, arithmeticity and Commensurability

- Discreteness. When Γ is discrete, it is a triangle group, generated by even number of reflections about sides of a spherical, euclidean or hyperbolic triangle. (Schwarz, Mostow, Knapp,…)

- Arithmeticity. Γ is arithmetic if the discreteness is provided by \mathbb{Z} being discrete in \mathbb{R}. Takeuchi (1977) listed all the arithmetic triangle groups (85 examples).
- Commensurability. Γ_{1}, Γ_{2} are commensurable in G, iff there is $g \in G$, such that $g \Gamma_{1} g^{-1} \cap \Gamma_{2}$ has finite indices in $g \Gamma_{1} g^{-1}, \Gamma_{2}$. This is commensurability of triangles.

Why ball quotients?

- Discreteness. Deligne-Mostow and Thurston's list: $94+10$ tuples of μ for $n \geq 2$.
- Arithmeticity. Nonarithmetic lattices in $P U(1,2)$ and one example in $P U(1,3)$.
■ For other simple groups, there are either infinitely many commensurability classes of nonarithmetic lattices, $(O(1, n)$ by Gromov-Piatetski-Shapiro), or only arithmetic lattices (Margulis superrigidity, Corlette, Gromov-Schoen).
■ Other constructions in $P U(1,2)$ by Barthel-Hirzebruch-Höfer via Bogomolov-Miyaoka-Yau inequality, and Yau's criterion for ball quotients.

Cyclic cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Kondō considers nonhyperelliptic curves of genus $4, D \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$. Taking triple covers of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ branching along D, gives surfaces $S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$.

- S is $K 3$.
- $H_{\chi}^{2}(S)$ has hermitian form with sign $(1,9)$.

■ Moduli of genus 4 curves \mathcal{M}_{4} is birational to $\Gamma \backslash \mathbb{B}^{9}$.
■ Nikulin theory on K3 lattice relates this ball quotient to Deligne-Mostow ball quotient with $\mu_{1}=\cdots=\mu_{12}=\frac{1}{6}$ up to finite cover.

Moduli spaces of genus three curves, cubic surfaces and cubic threefolds are ball quotiens in a similar way.

Cyclic cover of \mathbb{P}^{3}

Sheng-Xu-Zuo studied cyclic cover $Y \rightarrow \mathbb{P}^{3}$ branching along 6 hyperplanes.

■ Y is a Calabi-Yau orbifold admitting crepant resolution.
$■ \mathbb{Z} / 3 \mathbb{Z}$ operation decomposes $H^{3}(Y)$ as follows.

$$
\begin{array}{c|c|c|c|c}
& H^{3,0} & H^{2,1} & H^{1,2} & H^{0,3} \\
H_{\chi}^{3}(Y) & 1 & 3 & 0 & 0 \\
H_{\bar{\chi}}^{3}(Y) & 0 & 0 & 3 & 1
\end{array}
$$

- Period domain is \mathbb{B}^{3}.
- This is also related to Deligne-Mostow's example $C: y^{3}=\left(x-x_{1}\right) \cdots\left(x-x_{6}\right)$.
- Sheng-Xu proved global Torelli theorem for this family.

■ Sheng-Xu-Zuo classified such examples for cyclic covers of \mathbb{P}^{n} branching along hyperplanes.

Classification for $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

Let $Y \xrightarrow{3: 1} \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ be cyclic cover branching along simple normal crossing divisor $D=D_{1}+\cdots+D_{r} \in|\mathcal{O}(3,3,3)|$. As D_{i} vary in $\left|L_{i}\right|$, we obtain a family of Calabi-Yau orbifolds.

Theorem (Y.-Zheng)

The period map of this family factors through complex hyperbolic ball if and only if $L_{1} \cdots L_{r}$ are

$$
\begin{aligned}
& 1 L_{1}=(3,3,0) \text { and } L_{2}=(0,0,3) ;(\text { Voisin, Borcea and Rohde) } \\
& 2 \\
& 1 \\
& 3 \\
& L_{1}=(3,2,0) \text { and } L_{2}=(2,2,0), L_{2}=(1,0,2) \text { and } L_{3}=(0,1,1) \text {; } \\
& 4 \\
& L_{1}=(2,1,0), L_{2}=(1,0,2) \text { and } L_{3}=(0,2,1) \text {. }
\end{aligned}
$$

or their refinements. Moreover, the ball quotients in the 4 maximal cases have dimensions 9, 9, 7, 6 respectively.

Refinement and half-twist

Let $Y \xrightarrow{d: 1} X$ be cyclic cover branching along simple normal crossing divisor $D=D_{1}+\cdots+D_{r} \in\left|-\frac{d}{d-1} K_{X}\right|$. Then D corresponds a partition of $-\frac{d}{d-1} K_{X}$.

- Refinements of D preserves the ball-type property.
- When $d=3$, consider

$$
X^{\prime}=X \times \mathbb{P}^{1}, D_{i}^{\prime}=D_{i} \times \mathbb{P}^{1}, D_{r+1}^{\prime}=X \times 3 p t s
$$

The corresponding Y^{\prime} is called half-twist of Y.

- Half-twists generate the ball-type examples.

■ When $X=\left(\mathbb{P}^{1}\right)^{n}$, all ball-type examples are generated by refinements and half-twists from the previous list together with one more example for $n=4$.

Crepant resolution and completeness

The family of Calabi-Yau orbifolds Y admits crepant resolutions \widetilde{Y} by Sheng-Xu-Zuo.

Theorem (Y-Zheng)

If the family of Calabi-Yau manifolds \widetilde{Y} is of ball type and complete, then the divisor D is a refinement of the following 5 cases:

$$
\begin{aligned}
1 & L_{1}=(3,1,0), L_{2}=(0,2,1), L_{3}=(0,0,2) ; \\
2 & L_{1}=(3,0,0), L_{2}=(0,2,1), L_{3}=(0,1,2) ; \\
3 & L_{1}=(2,1,0), L_{2}=(1,0,2), L_{3}=(0,2,1) ; \\
4 & L_{1}=(2,1,0), L_{2}=(1,0,1), L_{3}=(0,1,1), L_{4}=(0,1,1) ; \\
5 & L_{1}=(2,1,0), L_{2}=(1,1,0), L_{3}=(0,1,1), L_{4}=(0,0,2) .
\end{aligned}
$$

The dimensions of the balls for the five cases are 5, 4, 6, 5, 4 . Higher dimensional families are generated by half-twists.

Ingredients in the Classification

- Local Torelli for equisingular deformation of cyclic covers.
- Stability and moduli dimension in GIT give the Hodge number.
- The classification method works for toric base or homogeneous variety.
- Refinements relation comes from a generalization of Clemens-Schmid long exact sequence by Kerr-Laza.
- The monodromy group is arithmetic subgroup in $\operatorname{PU}(1, n)$ by Borel extension.

■ Half twist is $Y^{\prime}=(Y \times E) /(\mathbb{Z} / 3 \mathbb{Z})$, where E is the elliptic curve with $j(E)=0$.

Relation to Deligne-Mostow

Most of the examples are Deligne-Mostow ball quotients up to finite index. Consider $S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $D_{1} \in|\mathcal{O}(3,1)|$ and $D_{2} \in|\mathcal{O}(0,2)|$. The branching divisor D is as follows.

- The fibration $S \rightarrow \mathbb{P}^{1}$ is isotrivial elliptic fibration with 6 singular fibers in both directions.
■ The singular fibers in first projection gives rise to Deligne-Mostow tuple $\mu=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ by Kodaira.
- The second projection gives rise to Deligne-Mostow tuple $\nu=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$.
- Corollary: the two Deligne-Mostow lattices are the same up to finite index (commensurable).
■ In dimension 3, most examples are isotrivial fibrations of $K 3$ surfaces. Singular fibers give the Deligne-Mostow data.

Commensurability relations

Theorem (Deligne-Mostow, Sauter (1980s))

Commensurability pairs $\Gamma_{\mu} \sim \Gamma_{\nu}$ in $P U(1,2)$ with explicit indices.

$$
\begin{aligned}
1 \mu & =(a, a, b, b, 1-2 a-2 b), \\
\nu & =\left(1-b, 1-a, a+b-\frac{1}{2}, a+b-\frac{1}{2}, 1-a-b\right) . \\
2 \mu & =\left(\frac{1}{2}-a, \frac{1}{2}-a, \frac{1}{2}-a, \frac{1}{6}+a, 2\left(\frac{1}{6}+a\right)\right), \\
\nu & =\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{6}-a, \frac{2}{3}+a\right) .
\end{aligned}
$$

- The pairs were found by Mostow with computer investigation.

■ Kappes-Möller (2012),McMullen (2013) proved that those pairs provide all commensurability classes for non-arithmetic Deligne-Mostow lattices.

- Commensurability invariants are adjoint trace fields and ratios of Chern numbers similar as Hirzebruch proportionality.

Theorem (Y.-Zheng)

Commensurabilities with explicit indices. (Not necessarily discrete)
$1 n=2$, reprove Deligne-Mostow, Sauter.
$2 n=3$, two infinite series.

$$
\begin{aligned}
\mu & =\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, 1-a, \frac{1}{3}+a\right) \\
\nu & =\left(a, a, a, \frac{2}{3}-a, \frac{2}{3}-a, \frac{2}{3}-a\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu & =\left(\frac{1}{2}-a, \frac{1}{2}-a, \frac{1}{2}-a, \frac{1}{2}-a, 2 a, 2 a\right) \\
\nu & =\left(\frac{1}{2}-a, \frac{1}{2}-a, \frac{1}{2}-a, a, a, \frac{1}{2}+a\right)
\end{aligned}
$$

3 $n \geq 3$, finite pairs.

Cyclic covers of Calabi-Yau type

- The proof is based on moduli spaces \mathcal{M} of Calabi-Yau type cyclic covers over $\left(\mathbb{P}^{1}\right)^{m}$.

$$
Y: y^{d}=\left(f_{1}\right)^{a_{1}} \cdots\left(f_{k}\right)^{a_{k}}
$$

- The Calabi-Yau condition $h_{\chi}^{m, 0}(Y)=1$, and ball-type conditions

$$
\begin{aligned}
\sum \operatorname{deg} f_{i} & =(3, \cdots, 3) \\
\sum \mu_{i} \operatorname{deg} f_{i} & =(1, \cdots, 1)
\end{aligned}
$$

- Asymmetric solutions give rise to commensurability pairs.

Reprove Deligne-Mostow, Sauter

$$
\begin{aligned}
\operatorname{deg} f_{1}=(2,1), \quad \operatorname{deg} f_{2} & =(1,0), \quad \operatorname{deg} f_{3}=\operatorname{deg} f_{4}=(0,1), \\
2 a_{1}+a_{2} & =a_{1}+a_{3}+a_{4}=d
\end{aligned}
$$

Then Y admits two fibrations with five singular fibres.

Commensurability invariants

- The arithmetic Deligne-Mostow lattices Γ_{μ} are related to $K=\left(\mathbb{Q}\left[\zeta_{d}\right] \cap \mathbb{Q}\right)$-algebraic groups $P U\left(h_{\mu}\right)$.
■ 「 ${ }_{\mu} \sim \Gamma_{\nu}$ if and only if $P U\left(h_{\mu}\right) \cong P U\left(h_{\nu}\right)$ as K-algebraic groups.
- In Deligne-Mostow theory with $n \geq 2$, this is equivalent to $\mathbb{Q}\left[\zeta_{d}\right]$ being the same and h_{μ} conformal to h_{ν}, which can be determined by lattice invariants.
- When $n=1$, this is no longer true. When $d_{\mu}=4, d_{\nu}=6$, there are $P U\left(h_{\mu}\right) \cong P U\left(h_{\nu}\right)$ as \mathbb{Q}-algebraic groups.
■ This approach does not give commensurability indices.

Thank you!

 Happy birthday, Professor Yau!