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Moduli spaces and locally symmetric spaces

Many locally symmetric spaces have modular interpretations. Let
M be moduli of certain algebraic varieties, D Hermitian symmetric
domain and Γ ⊂ Aut(D) discrete lattice acting on D. The period
map induces

M←→ Γ\D

Famous examples include:
1 M : moduli of polarized abelian varieties, D : Siegel upper half

space
2 M : moduli of polarized K3 surfaces, D : Type-IV domain
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Complex hyperbolic balls

Let h be a Hermitian form on vector space V with signature (1, n).
The complex hyperbolic ball of dimension n is

Bn = {v ∈ P(V ) | h(v , v) > 0}

Examples of moduli spaces with ball structure:
1 (Deligne-Mostow) Moduli of (n + 3)-points on P1

2 (Allcock-Carlson-Toledo) Moduli of cubic surfaces and cubic
threefolds

3 (Kondō) Moduli of genus 3 curves and genus 4 curves.
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Cyclic cover of projective line

Euler, Riemann, Schwarz, Picard, · · · , Shimura, Deligne-Mostow,
Thurston: consider cyclic covers of P1

Cµ : yd = (x − x1)
a1 · · · (x − xn+3)

an+3

with 0 < µi =
ai
d < 1 and

∑
i µi ∈ Z. The cyclic group Z/dZ acts

on Cµ and decomposes H1(Cµ) by characters.
When

∑
µi = 2, H1

χ(Cµ) has hermitian form with sign (1, n).
Moduli of such Cµ isM = PSL(2,C)\

(
(P1)n+3 − diagonals

)
Monodromy representation ρ : π1(M)→ PU(1, n),
Γµ = Im(ρ)

M∼= Γ\Bn
BB
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Connection with hypergeometric functions when n = 1

Euler introduced hypergeometric functions

2F1

[
a b

c
; x

]
=

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, |x | < 1

where (a)k = a(a− 1) · · · (a− k + 1).
It satisfies a 2nd -order differential equation

x(1− x)
d2y

dx2 + (c − (a+ b + 1)x)
dy

dx
− aby = 0

It has an integral representation

2F1

[
a b

c
; x

]
=

Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
za−1(1− z)c−a−1(1− zx)−bdz

=
Γ(c)

Γ(a)Γ(c − a)

∫ ∞

1
zb−c(z − 1)c−a−1(z − x)−bdz
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Monodromy representation

The differential equation has three regular singular points
{0, 1,∞} on the Riemann sphere P1.
The analytic continuation of two linearly independent solutions
F1,F2 gives rise to a representation

ρ : π1(P1 − {0, 1,∞})→ PGL(2,C).

Schwarz found that the two solutions are algebraic functions iff
Γ = Im(ρ) is finite.
Schwarz also showed that the inverse of F1

F2
being single-valued

is equivalent to Γ being discrete.
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Discreteness, arithmeticity and Commensurability

Discreteness. When Γ is discrete, it is a triangle group,
generated by even number of reflections about sides of a
spherical, euclidean or hyperbolic triangle. (Schwarz, Mostow,
Knapp,· · · )

Arithmeticity. Γ is arithmetic if the discreteness is provided by
Z being discrete in R. Takeuchi (1977) listed all the arithmetic
triangle groups (85 examples).
Commensurability. Γ1, Γ2 are commensurable in G , iff there is
g ∈ G , such that gΓ1g

−1 ∩ Γ2 has finite indices in gΓ1g
−1, Γ2.

This is commensurability of triangles.
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Why ball quotients?

Discreteness. Deligne-Mostow and Thurston’s list: 94 + 10
tuples of µ for n ≥ 2.
Arithmeticity. Nonarithmetic lattices in PU(1, 2) and one
example in PU(1, 3).
For other simple groups, there are either infinitely many
commensurability classes of nonarithmetic lattices, (O(1, n) by
Gromov-Piatetski-Shapiro), or only arithmetic lattices
(Margulis superrigidity, Corlette, Gromov-Schoen).
Other constructions in PU(1, 2) by Barthel-Hirzebruch-Höfer
via Bogomolov-Miyaoka-Yau inequality, and Yau’s criterion for
ball quotients.
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Cyclic cover of P1 × P1

Kondō considers nonhyperelliptic curves of genus 4, D ⊂ P1 × P1.
Taking triple covers of P1 × P1 branching along D, gives surfaces
S → P1 × P1.

S is K3.
H2
χ(S) has hermitian form with sign (1, 9).

Moduli of genus 4 curvesM4 is birational to Γ\B9.
Nikulin theory on K3 lattice relates this ball quotient to
Deligne-Mostow ball quotient with µ1 = · · · = µ12 = 1

6 up to
finite cover.

Moduli spaces of genus three curves, cubic surfaces and cubic
threefolds are ball quotiens in a similar way.
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Cyclic cover of P3

Sheng-Xu-Zuo studied cyclic cover Y → P3 branching along 6
hyperplanes.

Y is a Calabi-Yau orbifold admitting crepant resolution.
Z/3Z operation decomposes H3(Y ) as follows.

H3,0 H2,1 H1,2 H0,3

H3
χ(Y ) 1 3 0 0

H3
χ̄(Y ) 0 0 3 1

Period domain is B3.
This is also related to Deligne-Mostow’s example
C : y3 = (x − x1) · · · (x − x6).
Sheng-Xu proved global Torelli theorem for this family.
Sheng-Xu-Zuo classified such examples for cyclic covers of Pn

branching along hyperplanes.
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Classification for P1 × P1 × P1

Let Y 3:1−−→ P1 × P1 × P1 be cyclic cover branching along simple
normal crossing divisor D = D1 + · · ·+ Dr ∈ |O(3, 3, 3)|. As Di

vary in |Li |, we obtain a family of Calabi-Yau orbifolds.

Theorem (Y.-Zheng)

The period map of this family factors through complex hyperbolic
ball if and only if L1 · · · Lr are

1 L1 = (3, 3, 0) and L2 = (0, 0, 3); (Voisin, Borcea and Rohde)
2 L1 = (3, 2, 0) and L2 = (0, 1, 3);
3 L1 = (2, 2, 0), L2 = (1, 0, 2) and L3 = (0, 1, 1);
4 L1 = (2, 1, 0), L2 = (1, 0, 2) and L3 = (0, 2, 1).

or their refinements. Moreover, the ball quotients in the 4 maximal
cases have dimensions 9, 9, 7, 6 respectively.
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Refinement and half-twist

Let Y d :1−−→ X be cyclic cover branching along simple normal
crossing divisor D = D1 + · · ·+ Dr ∈ | − d

d−1KX |. Then D

corresponds a partition of − d
d−1KX .

Refinements of D preserves the ball-type property.
When d = 3, consider

X ′ = X × P1, D ′
i = Di × P1, D ′

r+1 = X × 3pts

The corresponding Y ′ is called half-twist of Y .
Half-twists generate the ball-type examples.
When X = (P1)n, all ball-type examples are generated by
refinements and half-twists from the previous list together with
one more example for n = 4.
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Crepant resolution and completeness

The family of Calabi-Yau orbifolds Y admits crepant resolutions Ỹ
by Sheng-Xu-Zuo.

Theorem (Y-Zheng)

If the family of Calabi-Yau manifolds Ỹ is of ball type and complete,
then the divisor D is a refinement of the following 5 cases:

1 L1 = (3, 1, 0), L2 = (0, 2, 1), L3 = (0, 0, 2);
2 L1 = (3, 0, 0), L2 = (0, 2, 1), L3 = (0, 1, 2);
3 L1 = (2, 1, 0), L2 = (1, 0, 2), L3 = (0, 2, 1);
4 L1 = (2, 1, 0), L2 = (1, 0, 1), L3 = (0, 1, 1), L4 = (0, 1, 1);
5 L1 = (2, 1, 0), L2 = (1, 1, 0), L3 = (0, 1, 1), L4 = (0, 0, 2).

The dimensions of the balls for the five cases are 5, 4, 6, 5, 4.
Higher dimensional families are generated by half-twists.
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Ingredients in the Classification

Local Torelli for equisingular deformation of cyclic covers.
Stability and moduli dimension in GIT give the Hodge number.
The classification method works for toric base or homogeneous
variety.
Refinements relation comes from a generalization of
Clemens-Schmid long exact sequence by Kerr-Laza.
The monodromy group is arithmetic subgroup in PU(1, n) by
Borel extension.
Half twist is Y ′ = (Y × E )/(Z/3Z), where E is the elliptic
curve with j(E ) = 0.
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Relation to Deligne-Mostow

Most of the examples are Deligne-Mostow ball quotients up to
finite index. Consider S → P1 × P1 and D1 ∈ |O(3, 1)| and
D2 ∈ |O(0, 2)|. The branching divisor D is as follows.
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DDD

EEEFFF

GGG HHH

III JJJ

KKK
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The fibration S → P1 is isotrivial elliptic fibration with 6
singular fibers in both directions.
The singular fibers in first projection gives rise to
Deligne-Mostow tuple µ = (1

3 ,
1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3) by Kodaira.

The second projection gives rise to Deligne-Mostow tuple
ν = (2

3 ,
2
3 ,

1
6 ,

1
6 ,

1
6 ,

1
6).

Corollary: the two Deligne-Mostow lattices are the same up to
finite index (commensurable).
In dimension 3, most examples are isotrivial fibrations of K3
surfaces. Singular fibers give the Deligne-Mostow data.
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Commensurability relations

Theorem (Deligne-Mostow, Sauter (1980s))

Commensurability pairs Γµ ∼ Γν in PU(1, 2) with explicit indices.
1 µ = (a, a, b, b, 1− 2a− 2b),

ν = (1− b, 1− a, a+ b − 1
2 , a+ b − 1

2 , 1− a− b).
2 µ = (1

2 − a, 1
2 − a, 1

2 − a, 1
6 + a, 2(1

6 + a)),
ν = (1

6 ,
1
6 ,

1
6 ,

5
6 − a, 2

3 + a).

The pairs were found by Mostow with computer investigation.
Kappes-Möller (2012),McMullen (2013) proved that those
pairs provide all commensurability classes for non-arithmetic
Deligne-Mostow lattices.
Commensurability invariants are adjoint trace fields and ratios
of Chern numbers similar as Hirzebruch proportionality.
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Theorem (Y.-Zheng)

Commensurabilities with explicit indices. (Not necessarily discrete)
1 n = 2, reprove Deligne-Mostow, Sauter.
2 n = 3, two infinite series.

µ = (1
6 ,

1
6 ,

1
6 ,

1
6 , 1− a, 1

3 + a)

ν = (a, a, a, 2
3 − a, 2

3 − a, 2
3 − a)

and

µ = (1
2 − a, 1

2 − a, 1
2 − a, 1

2 − a, 2a, 2a)
ν = (1

2 − a, 1
2 − a, 1

2 − a, a, a, 1
2 + a)

3 n ≥ 3, finite pairs.
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Cyclic covers of Calabi-Yau type

The proof is based on moduli spacesM of Calabi-Yau type
cyclic covers over (P1)m.

Y : yd = (f1)
a1 · · · (fk)ak

The Calabi-Yau condition hm,0
χ (Y ) = 1, and ball-type

conditions ∑
deg fi = (3, · · · , 3)∑

µi deg fi = (1, · · · , 1)

Asymmetric solutions give rise to commensurability pairs.
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Reprove Deligne-Mostow, Sauter

deg f1 = (2, 1), deg f2 = (1, 0), deg f3 = deg f4 = (0, 1),

2a1 + a2 = a1 + a3 + a4 = d

Then Y admits two fibrations with five singular fibres.
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Commensurability invariants

The arithmetic Deligne-Mostow lattices Γµ are related to
K = (Q[ζd ] ∩Q)-algebraic groups PU(hµ).
Γµ ∼ Γν if and only if PU(hµ) ∼= PU(hν) as K -algebraic
groups.
In Deligne-Mostow theory with n ≥ 2, this is equivalent to
Q[ζd ] being the same and hµ conformal to hν , which can be
determined by lattice invariants.
When n = 1, this is no longer true. When dµ = 4, dν = 6,
there are PU(hµ) ∼= PU(hν) as Q-algebraic groups.
This approach does not give commensurability indices.
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Thank you!

Happy birthday, Professor Yau!
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