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1. Introduction to Primordial Black Holes
(as dark matter)

Motivation & history
Formation

Observational constraints

Reviews

Green & Kavanagh, J. Phys. G. arXiv:2007.10722, ‘PBHs as a dark matter candidate’
Bradley Kavanagh’s PBH abundance constraint plotting code: https://github.com/bradkav/PBHbounds

Carr & Kuhnel, Ann. Rev. Nuc. Part. Sci. arXiv:2006.02838, ‘PBHs as dark matter: recent developments’



https://inspirehep.net/literature/1808121
https://github.com/bradkav/PBHbounds
https://inspirehep.net/literature/1799536
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Lots of evidence for non-baryonic cold dark matter from diverse

astronomical and cosmological observations

[galaxy rotation curves, galaxy clusters (galaxy velocities, X-ray gas, lensing),
galaxy red-shift surveys, Cosmic Microwave Background]

assuming Newtonian gravity/GR is correct.
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No sign (yet...) of well-motivated particle dark matter candidates in ‘direct detection’
experiments:
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Cross section photons
167 o LUX (M) -
NG CRESST (Surf)
107 - Az CAST Solar v
& O’\’/, EDELWEISS (Surf) = N Horizontal branch
g 10% @ X NEWS-G |
= \\\ DAMANa > 5
g 10 \ D _pamic  DAMAA — Q %
g : - o @) :
UQJ) 10 SuperCDMS L Side-30 :
2 SSEOCUHNES e BEC =
o - 0 LUX S
g 1w N \.\-—'/ 50 .
107 | — " 3
= =
10~ 1 e %
= =]
IO—SU lll L L | lllll‘ 1 1 lllllll L 1 lllllll L L1 Illlll 1 L1l 1 111} i °
0.1 0305 1 35 10 30 50 100 300 1000 3000 10
WIMP mass [GeV /Cz] Xo/x?_@/o@/@@ﬂ xQ/%@/q 10/6@/6&0)‘&0/3@/1@/& AP A AT AP AT 4T A° 4T
m, eV
Mass aleV] Mass

APPEC committee report QO’Hare



https://inspirehep.net/literature/1858426
https://cajohare.github.io/AxionLimits/

Primordial Black Holes (PBHs) may form from over densities in the early Universe
(before nucleosynthesis) and are therefore non-baryonic. zel’dovich and Novikov; Hawking

PBHs evaporate (Hawking radiation), lifetime longer
than the age of the Universe (and DM candidate) if
M z 10" g. MacGibbon

[Aside: evaporation of lighter PBHs can produce stable
massive particle (i.e. DM) and have other cosmological
conseguences (talks: Perez-Gonzalez, Turner) |

A DM candidate which (unlike WIMPs, axions, sterile neutrinos,...) isn’t a new particle,
however their formation does usually require Beyond the Standard Model physics, e.qg.
inflation.


https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1971MNRAS.152...75H/abstract
https://inspirehep.net/literature/101338
https://inspirehep.net/literature/29873

Was realised that PBHs are a cold dark matter (DM) candidate in the 1970s Hawking; Chapline

Wave of interest in ~Solar mass PBHs as DM in late 1990s, generated by excess of LMC
microlensing events in MACHO collaboration’s 2 year data set.

Nakamura et al. (1997): PBH binaries form in the early Universe and (if they survive to the
present day) GWs from their coalescence detectable by LIGO.



https://ui.adsabs.harvard.edu/abs/1971MNRAS.152...75H/abstract
https://inspirehep.net/literature/1765154
https://inspirehep.net/literature/420172
https://inspirehep.net/literature/442970

Was realised that PBHSs are a cold dark matter (DM) candidate in the 1970s Hawking; Chapline

Wave of interest in ~Solar mass PBHs as DM in late 1990s, generated by excess of LMC
microlensing events in MACHO collaboration’s 2 year data set.

Nakamura et al. (1997): PBH binaries form in the early Universe and (if they survive to the
present day) GWs from their coalescence detectable by LIGO.

Could (some of) the BHs in the LIGO-Virgo BH binaries be primordial? (and also a
significant component of the DM?) Bird et al.; Clesse & Garcia-Bellido; Sasaki et al.

Masses In the Stellar Graveyard

EM Neutron Stars

100M, |- )

10M

%ce . &
Ooo-ooooooooooooo ;
LT

LIGO-Virgo-KAGRA, Geller


https://ui.adsabs.harvard.edu/abs/1971MNRAS.152...75H/abstract
https://inspirehep.net/literature/1765154
https://inspirehep.net/literature/420172
https://inspirehep.net/literature/442970
https://inspirehep.net/literature/1425647
https://inspirehep.net/literature/1428655
https://inspirehep.net/literature/1435028

Was realised that PBHs are a cold dark matter (DM) candidate in the 1970s Hawking; Chapline

Wave of interest in ~Solar mass PBHs as DM in late 1990s, generated by excess of LMC
microlensing events in MACHO collaboration’s 2 year data set.

Nakamura et al. (1997): PBH binaries form in the early Universe and (if they survive to the
present day) GWs from their coalescence detectable by LIGO.

Could (some of) the BHs in the LIGO-Virgo BH binaries be primordial? (and also a
significant component of the DM?) Bird et al.; Clesse & Garcia-Bellido; Sasaki et al.

result of an inSPIRE search for ‘primordial black hole’
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https://ui.adsabs.harvard.edu/abs/1971MNRAS.152...75H/abstract
https://inspirehep.net/literature/1765154
https://inspirehep.net/literature/420172
https://inspirehep.net/literature/442970
https://inspirehep.net/literature/1425647
https://inspirehep.net/literature/1428655
https://inspirehep.net/literature/1435028

Formation

Most ‘popular’ mechanism: collapse of large density perturbations during radiation
domination. Zeldovich & Novikov; Hawking; Carr & Hawking

If a region is sufficiently over-dense, gravity overcomes pressure and it collapse to
form a BH shortly after ‘horizon entry’.

other mechanisms:

« collapse of cosmic string loops Hawking; Polnarev & Zemboricz,

» bubble collisions Hawking, Moss & Stewart,

- fragmentation of inflaton scalar condensate Cotner & Kusenko,

 collapse of density perturbations during matter domination Khlopov & Polnarev,

- trapped vacuum bubbles (talk: Escriva),
« confinement (talk: Zantedeschi),


https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1971MNRAS.152...75H/abstract
https://inspirehep.net/literature/95453
https://inspirehep.net/literature/254374
https://inspirehep.net/literature/266592
http://www.apple.com/uk
https://inspirehep.net/literature/1502314
https://inspirehep.net/literature/160187

‘zero-th order’ analysis: car

i) criterion for PBH formation:

critical density: 0> 0. ~w =

PBH mass roughly equal to horizon mass:

¢ ¢
M ~ 10%° ~ M
1078 5 ) 0 ()

Criterion is actually:
best specified in terms of compaction function,

depends on shape of perturbation (which depends on primordial power spectrum).

Harada,Yoo & Kohri; Germani & Musco; Musco; Escriva, Germani & Sheth. For overview see Escriva, Kuhnel & Tada
(talk: Harada)



https://inspirehep.net/literature/107085
https://inspirehep.net/literature/1254374
https://inspirehep.net/literature/1672505
https://inspirehep.net/literature/1692957
https://inspirehep.net/literature/1747265
https://inspirehep.net/literature/2180475

ii) PBH abundance:

initial PBH mass fraction (fraction of universe in regions dense enough to form PBHs):

su) ~ [ " P(S(M)) (M)

C

0
assuming a gaussian probability distribution: B(M) = erfc < : )

B must be small, hence o « 6 and

P(8) v

o(Mu) (mass variance)

typical size of fluctuations o=

P(8)

PBH forming

2/ fluctuations

| 1

0
But this Press-Schechter, approach gives a biased estimate of the PBH mass
fraction. e.g. Germani & Sheth (talk: Sheth)
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https://inspirehep.net/literature/2686053

Since PBHs are matter, during radiation domination the fraction of energy in PBHs
grows with time:

—3
PPBH a
X T4 X a
Prad a
matter-radiation
equality
p radiation ¢ matter
log A domination . domination
Ptot .
radiation

PBHs

3 >
log a

Relationship between PBH initial mass fraction, 3, and fraction of DM in form of
PBHs, f:

I.e. initial mass fraction must be small.



On CMB scales the primordial perturbations have amplitude o (Mpy) ~ 107°

If the primordial perturbations are very close to scale-invariant the number of PBHs
formed will be completely negligible:

-

B(M) ~ erfc(10°) ~ exp (—10'Y)

To form an interesting number of PBHs the primordial perturbations must be
significantly larger (02(Mn)~0.01) on small scales than on cosmological scales.
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On CMB scales the primordial perturbations have amplitude o (Mpy) ~ 107°

If the primordial perturbations are very close to scale-invariant the number of PBHs
formed will be completely negligible:

-t )

B(M) ~ erfc(10°) ~ exp (—10%)

To form an interesting number of PBHs the primordial perturbations must be
significantly larger (02(Mn)~0.01) on small scales than on cosmological scales.
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https://inspirehep.net/literature/354785
https://inspirehep.net/literature/733214
https://inspirehep.net/literature/806030

deviations from simple scenario:

i) critical collapse

Niemeyer & Jedamzik

BH mass depends on size of o o\
fluctuation it forms from: M = kMu(0 — oc)

1og(MBH) T
M - i
H 0 ﬁﬁ”ﬂﬁ _
. ]

-1 Lﬁ” _

5
_2 - N
deuncpnﬂ
_a A
T '—|10' | '—lal | '—lsl | '—|4' | '—lzl T
Musco, Miller & Polnarev log (5 o 5C)

Get PBHs with range of masses produced even if they all form at the same time
l.e. we don’t expect the PBH MF to be a delta-function


https://inspirehep.net/literature/448227
https://inspirehep.net/literature/801976

i) non-gaussianity of probability distribution

Since PBHs are formed from rare large density fluctuations, changes in the shape
of the tail of the probability distribution (i.e. non-gaussianity) can significantly affect
the PBH abundance. Bullock & Primack; lvanov;... Francolini et al.

Relationship between density perturbations and curvature perturbations is non-
linear, so even if curvature perturbations are gaussian (large) density perturbations
won’t be. Kawasaki & Nakatsuka; De Luca et al.; Young, Musco & Byrnes

(talks: Kristiano, Kawaguchi)


https://inspirehep.net/literature/425993
https://inspirehep.net/literature/447615
https://inspirehep.net/literature/1650922
https://inspirehep.net/literature/1724151
https://inspirehep.net/literature/1727615
https://inspirehep.net/literature/1727642

Inflation: a brief crash course

A postulated period of accelerated expansion in the early Universe, proposed to solve
various problems with the Big Bang (flatness, horizon & monopole).

Driven by a ‘slowly rolling’ scalar field.
Quantum fluctuations in scalar field generate density perturbations.

Scale dependence of primordial perturbations depends on shape of potential:

V(g)
in slow-roll approx
V3
2
Yadav & Wandelt o (MH) X (V/)2
¢L§MB Pend Reheating
Scales probed by: 2 S

Large scale structure  Primordial Black Holes
& the CMB



inflation models that produce large perturbations

In slow-roll approx™:
V3/2
V/

O X

A plateau in the potential can generate large perturbations which form an interesting
abundance of PBHSs. Ivanov, Naselsky, Novikov

*in ‘ultra-slow-roll’ limit, V' — 0, this expression isn’t accurate (and USR also affects
probability distribution of fluctuations).

Requirements for a PBH producing inflation model:

) produce measured power spectrum (amplitude and scale dependence) on
cosmological scales,

i) amplitude of perturbations ~3.5 orders of magnitude larger on some smaller scale,

iii) inflation ends.

(talks: Ketov, Wang)


https://inspirehep.net/literature/37956

Observational constraints

(assuming a delta-function PBH mass function)
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https://github.com/bradkav/PBHbounds

Observational constraints
(assuming a delta-function PBH mass function)
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multi-Solar mass Primordial Black Holes making up all of the DM appears to be

excluded.
However there is a hard to probe, open window for very light (asteroid mass) PBHSs.

(talks: Kuhnel, Kohri, Kuroyanagi, Takahashi)


https://github.com/bradkav/PBHbounds

2. Stellar microlensing constraints on PBH
dark matter

How robust are the stellar microlensing constraints?

How does realistic modelling of
« DM distribution within the Milky Way
- PBH mass function
- PBH clustering

effect the constraints?



Stellar microlensing

Observe temporary (achromatic) brightening of background star when compact object
passes close to the line of sight. Paczynski
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Not to scale! EROS


https://inspirehep.net/literature/212738

Einstein radius:

v \NY2/ p 1/2
Rp~3x107* 1 — °
p~3x 107 peya(l - 2) <1OM@> (50 kpc)

along the line of sight
perpendicular to the line of sight

‘Duration’ of event (Einstein diameter crossing time):

. 2Rp M \Y?/ D, \Y? v -1
t = ~ 3 1 —
v yr\/ai( 7) (1OM@) 50 kpc 200 km s+



EROS

Monitored 67 million stars in LMC and SMC for 6.7 years. EROS
Use bright stars in sparse fields (to avoid complications due to ‘blending’-contribution
to baseline flux from unresolved neighbouring star).

1 SMC event (also seen by MACHO collab.) consistent with expectations for self-lensing
(SMC is aligned along line of sight).

Earlier candidate events eliminated: 7 varied again and 3 identified as supernovae.

Constraints on fraction of halo in compact objects, f, (DF MF):

f 0.6

0.4]- A
_ MACHO
: - 95% cl B
d:
2 0.2+ EROS-2 + EROS-1 N
I upper limit (95% cl)

0.0 ' | =y '

2 —8 _6 -4 -2 0 2


https://inspirehep.net/literature/721201

MACHQ long duration

MACHO null search for long (> 150 day) duration events MACHO:
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https://inspirehep.net/literature/548827

combined long duration

Combined data from EROS-2 and MACHO (14.1 million objects, over 10.6 years):

Blaineau et. al.
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Including OGLE-IIl and IV data would extend timescale to 30 years, and constraints
to ~ 3000M.


https://inspirehep.net/literature/2040092

OGLE: Galactic bulge

Observed events consistent with expectations from stars (except for 6 ultra-short
(0.1-0.3) day events)

Exclusion limit Allowed region
assuming no PBH lensing observed assuming 6 ultra-short events are
due to PBHs
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Niikura et al.


https://inspirehep.net/literature/1716237

HSC: M31

Subaru HSC observations have higher cadence than EROS/MACHO, so sensitive to
shorter duration events and hence lighter compact objects. Niikura et al.
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Smyth et al.

Finite size of source stars and effects of wave optics (Schwarzschild radius of BH

comparable to wavelength of light) leads to reduction in maximum magnification. Sugiyama,
Kurita & Takada and references therein.

And only large stars are bright enough for microlensing to be observed. Montero-Camacho et
al.; Smyth et al.



https://inspirehep.net/literature/1735170
https://inspirehep.net/literature/1735170
https://inspirehep.net/literature/1740010
https://inspirehep.net/literature/1740010
https://inspirehep.net/literature/1757410
http://www.apple.com/uk
https://inspirehep.net/literature/1757410

compilation of stellar microlensing constraints

M31 (HSC, Croon et al.), Galactic bulge (OGLE),LMC/SMC (MACHO, EROS, OGLE, combined
long duration).
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https://inspirehep.net/literature/1508145
https://inspirehep.net/literature/1808890
https://inspirehep.net/literature/1716237
https://inspirehep.net/literature/548827
https://inspirehep.net/literature/721201
https://inspirehep.net/literature/1716237
https://ui.adsabs.harvard.edu/abs/2022arXiv220213819B/abstract
https://ui.adsabs.harvard.edu/abs/2022arXiv220213819B/abstract

Effect of MW DM distribution on constraints

Evans power law halo models: self-consistent halo models, which allow for non-flat

rotation curves.

Traditionally used in microlensing studies [Alcock et al. MACHO collab.; Hawkins] Since there are
analytic expressions for velocity distribution.
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envelope of MW rotation curve data [Bhattacharjee et al.]



http://www.apple.com/uk
https://inspirehep.net/literature/420172
https://inspirehep.net/literature/1350226

Microlensing differential event rate
(f=1 M= 1 M, , and perfect detection efficiency)

400

Einstein diameter crossing time (days)

Microlensing: standard halo (SH)
— — — power law halos B and C




EROS constraints on halo fraction for delta-function MF
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constraints on (realistic) extended mass functions

Extended MFs produced by broad peak in power spectrum, moderately well
approximated by a log-normal distribution: Green; Kannike et al.
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https://inspirehep.net/literature/1485171
http://www.apple.com/uk

EROS microlensing constraints on width of log-
normal MF with f=1

10%10(Mc/M®)

standard halo (SH)

— — — power law halos C and B

.......... SH local density, 0.005 and 0.015
————— SH local circular speed, 200 & 240 km/s

Brandt dwarf galaxy constraints



Clustering of PBHs formed from collapse of large density perturbations

PBHs don’t form in clusters Ali-Haimoud (previous work Chisholm extrapolated an expression
for the correlation function beyond its range of validity).

However there are additional isocurvature perturbations (due to Poisson fluctuations

in PBH distribution) and PBH clusters form shortly after matter-radiation equality.
Afshordi, Macdonald & Spergel; Inman & Ali-Haimoud; Jedamzik

power spectrum
P(k)
(o< k™)

Increasing
PBH mass

log P(k) (Mpc® h3)

0_=1-0,=0.3
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log k(h Mpc™!)
K = comoving wavenumber
Afshordi, Macdonald & Spergel



https://inspirehep.net/literature/1673267
https://inspirehep.net/literature/691455
https://inspirehep.net/literature/612752
https://inspirehep.net/literature/612752
https://inspirehep.net/literature/1744485
https://inspirehep.net/literature/1802157

Clustering of PBHs formed from collapse of large density perturbations

PBHs don’t form in clusters Ali-Haimoud (previous work Chisholm extrapolated an expression
for the correlation function beyond its range of validity).

However there are additional isocurvature perturbations (due to Poisson fluctuations

in PBH distribution) and PBH clusters form shortly after matter-radiation equality.
Afshordi, Macdonald & Spergel; Inman & Ali-Haimoud; Jedamzik
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https://inspirehep.net/literature/612752
https://inspirehep.net/literature/1744485
https://inspirehep.net/literature/1802157

Approximate analytic calculation

c.f. Afshordi, Macdonald & Spergel; Jedamzik

PBH DM has additional isocurvature perturbations S(N) = AN 1
due to Poisson fluctuations in their distribution: N VN
3
growth factor for isocurvature perturbations: D(a) ~ (1 +3 aa >
eq

spherical top hat collapse:

collapse occurs when: D(aco1)0(N) = dcritical =~ 1.69
final halo/cluster density: Pcl ~ 178,0DM(acoll)
Y 1/3
radius of cluster: ro ~ 0.01 < PBH) N3/6pe
M.
®

For Mpga = Mg , N=10 (100) clusters form at zcon =1200 (320) and have
ra~ 0.06 (0.5) pc.


https://inspirehep.net/literature/612752
https://inspirehep.net/literature/1802157

N-body simulations

Inman & Ali-Haimoud

Simulate a L = 30 h-1 kpc box, with Mppy = 20h_1M@ from radiation domination
to z = 99, for fren = 1 and also fren < 1 + particle dark matter.

matter field at z=100

_1n—5
Jeea = 10 fonr = 103

a PBH! —

fPBH — fpBH = 1071

feeu = 1071/ | '._ Jeea =1

Inman & Ali-Haimoud


https://inspirehep.net/literature/1744485

Ny /ANpgr/HL

Clusters containing small numbers of PBHs always most abundant, but abundance of

clusters containing large numbers of PBHs increases with time.
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Evolution of PBH clusters (and in particular PBH binaries) through to the present day is
a challenging open problem. e.g. Jedamzik; Trashorras et al....

Clusters containing < 103 PBHSs will evaporate by present day. Afshordi. Macdonald &

Spergel; Jedamzik



https://inspirehep.net/literature/1744485
https://inspirehep.net/literature/1802157
https://inspirehep.net/literature/1803366
https://inspirehep.net/literature/612752
https://inspirehep.net/literature/612752
https://inspirehep.net/literature/1802157

Effect of clustering on LMC microlensing constraints
Gorton & Green (see also PetaC, Lavalle & Jedamzik)

For PBHs formed from collapse of density perturbations during radiation, clusters are
sufficiently extended that PBHSs lens individually (separation of PBHs > Re).

Microlensing from a single cluster:

looking down on line of sight looking along line of sight
LMC cluster with small x
T x=1
X a — cluster

cluster with large x

Earth

x = fractional
line of sight dist


https://inspirehep.net/literature/2048344
https://inspirehep.net/literature/2005617

of finding a cluster at line of sight distance x is proportional to cross
sectional area of ‘cone’ to LMC

all the PBHSs in a given cluster cause events with the same

at which cluster causes microlensing events is proportional to solid angle
subtended by cluster times Einstein radius:

Close clusters (small x) but if one intersects the line of sight if
produces events at a



LMC microlensing differential event rate for clustered DM and standard smooth DM

all of the DM in clusters containing N¢=108 PBHs with mass
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Probability distribution of number of events in a long duration microlensing survey
if all of the DM is in PBHSs clusters containing Noi PBHs with mass Mpgy = 10° M,

Typical realisation \
YRISELIEAISALONS ) 6l N Ny =10°
No close cluster. YN 1 Ny =10
. ;) cl —
Deficit of events.S\ N O Ny =107
1 0.04 \
= \
Z‘é Rare realisations
2, 0.02 Close cluster.
— Excess of events.
0.00

Change in constraints is negligible apart (possibly) from at largest Mpesn probed by

stellar microlensing.
(if all of the DM is in PBH clusters containing N/ = 103 PBHs with mass Mppn = 10° Mg

constraint on fpeH from long duration microlensing survey weakens from 0.076 to 0.096).
Peta€, Lavalle & Jedamzik; Gorton & Green.



https://inspirehep.net/literature/2005617
https://inspirehep.net/literature/2048344

Summary

Primordial Black Holes can form in the early Universe, for instance from the collapse of large
density perturbations during radiation domination.

To produce an interesting number of PBHs, amplitude of perturbations must be ~3 orders of
magnitude larger on small scales than on cosmological scales.

There are numerous constraints on the abundance of PBHs from gravitational lensing,
their evaporation, dynamical effects, accretion and other astrophysical processes.

Solar mass PBHs probably can’t make up all of the dark matter, but lighter, (1017-1022)qg,
PBHs could.

Uncertainties in the dark matter distribution (density profile and clustering) have a non-
negligible effect on stellar microlensing constraints on multi-Solar mass compact objects
(but not sufficient for multi-Solar mass PBHs formed from the collapse of large density
perturbations to make up all of the DM).
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PBH formation: (some) other mechanisms




PBH formation: (some) other mechanisms

Collapse of cosmic string I00ps Hawking; Polnarev & Zemboricz;

Cosmic strings are 1d topological defects formed during symmetry breaking phase
transition.

String intercommute producing loops.

Small probability that loop will get into configuration where all dimensions lie within

Schwarzschild radius (and hence collapse to from a PBH with mass of order the
horizon mass at that time).

Probability is time independent, therefore PBHs have extended mass spectrum.



Bubble collisions Hawking

1st order phase transitions occur via the nucleation of bubbles.

i

V) O 0 i
bub-b-i-e. .-r;;;-l;;ti on @'\Tme Yacuum
) C

3

False vacuum

PBHs can form when bubbles collide (but bubble formation rate must be fine tuned).

PBH mass is of order horizon mass at phase transition.

Fragmentation of inflaton scalar condensate into oscillons/Q-balls

Cotner & Kusenko; Cotner, Kusenko & Takhistov

Scalar field with flat potential forms condensate at end of inflation, fragments into lumps
(oscillons/Q-balls) which can come to dominate universe and have large density
fluctuations that can produce PBHs.

Mass smaller than horizon mass and spin can be of order 1.



i) effect of phase transitions

Decrease in pressure leads to reduction in threshold for collapse and hence increase
iIn PBH abundance

e.g. the QCD phase transition when the horizon mass is ~Solar mass. Jedamzik

EW QCD ete™
PT PT annihilation
fraction of DM l l

in PBHs .
0.100

0.010

0.001 £

feer (M)

104 3

10-° 3

1076

10-° 10-° 0.1 1000.0 107

MpgH (MG)) Carr et al.

n.b. amplitude of power spectrum A = 0.02 assumed.


https://inspirehep.net/literature/419001
https://inspirehep.net/literature/2666549

PBH formation during an early (pre nucleosynthesis) period of matter domination

During matter domination PBHs can form from smaller fluctuations (no pressure to
resist collapse) in this case fluctuations must be sufficiently spherically symmetric
Yu, Khlopov & Polnarev; Harada et al. and

B(M) ~ 0.0565°+1:5%)

The required increase in the amplitude of the perturbations is reduced Georg, Sengér &
Watson; Georg & Watson; Carr, Tenkanen & Vaskonen; Cole & Byrnes:

Primordial o e ¢

curvature required amplituae for
rturbation «— Standard cosmological

ggwl;r 0 history

spectrum

— 4=10"%8s

= Varying duration
e of matter
e mination :
— e dOminatio amplitude on
-=--- Radiation domination, 6,=0.42 CMB Scales

)

Cole & Byrnes K



Inflation models that produce large perturbations




single field

Potential needs to be fine-tuned so that field goes past local min, but with reduced
speed.

Ballesteros & Taoso; Herzberg & Yamada

potential primordial power spectrum
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https://inspirehep.net/literature/1624133
https://inspirehep.net/literature/1645186
https://inspirehep.net/literature/1705469

multi-field models

e.g. hybrid inflation with a mild waterfall transition Garcia-Bellido. Linde & Wands

potential primordial power spectrum

001 ¢

10°*

P.(k)

1076 ¢

1078 ¢

=70 -60 -50 -40 -30 -20 -10
Ny

Buchmuller Clesse & Garcia-Bellido

various others for reviews see Oszoy & Tasinato: Escriva, Kuhnel & Tada

running mass, double inflation, axion-like curvaton, reduced sound speed, multi-
field models with rapid turns in field space,...

10—10 Lo


https://inspirehep.net/literature/1341986
https://inspirehep.net/literature/418759
http://www.apple.com/uk
https://inspirehep.net/literature/2180475

axion-like curvaton

Kawasaki, Kitajima & Yanagida

Large scale perturbations generated by inflaton, small scale (PBH forming) perturbations
by curvaton (a spectator field during inflation gets fluctuations and decays afterwards producing
perturbations Lyth & Wands)



b) double inflation

Saito, Yokoyama & Nagata; Kannike et al.

Perturbations on scales which leave the horizon close to the end of the 1st period,
of inflation get amplified during the 2nd period.
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Also double inflation models where large scale perturbations are produced during 1st

period, and small scale (PBH forming) perturbations during 2nd (Kawasaki et al.; Kannike et al.;
Inomata et al. )



i) monotonically increasing power spectrum

1
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An aside: ‘Pitfalls of a power-law parameterisation of the primordial power spectrum
for primordial black hole formation’ 1805.05178

It is common to parameterise the primordial power spectrum as:

Pr (k)

.

For slow-roll inflation

The expansion of ns is therefore valid only if € In (

K
ko

ns(k)—1
) with ns(k) = ng|k, + asln (

(nS o 1) ~ 0(6) )

k o [k
Tl pam?(E) 4+
k0>+6 : (’f0>+
as ~ O(e?), Bs~ O(e’) where €< 1
k
k_0> <1

This holds over cosmological scales, but not down to PBH forming scales:

Power spectra of

some PBH producing

inflation models:
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NANOGrav (pulsar timing array) 15 year data set

Interpretation in terms of scalar-induced gravitational waves Afzal et al.

for delta function primordial power spectrum

Pr(k)=Ad(Ink —Ink,)



https://inspirehep.net/literature/2672657

Observational constraints




other microlensing

Gravitational lensing where separation of images is micro-arcsecond, \\
too small to resolve, but can detect variations in magnification. °

supernovae: magnification distribution zumalacarregui & Seljak
luminosity-redshift relation Dhawan & Mértsell

lcarus: caustic crossing event Oguri et al.

quasars: flux ratios of multiply-lensed systems Esteban-Gutierrez et al.
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https://inspirehep.net/literature/1641243
https://inspirehep.net/literature/2626061
https://inspirehep.net/literature/2677403
https://inspirehep.net/literature/1628049

gravitational waves "
from PBH-PBH binary mergers <,

L W

PBH binaries can form at early times (from chance proximity). Nakamura et al.

If orbits aren’t significantly perturbed subsequently, then their mergers are orders of

magnitude larger than the merger rate measured by LIGO. Ali-Haimoud, Kovetz &
Kamionkowski

Also comparable constraints from stochastic GW from mergers. Wang et al.
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https://inspirehep.net/literature/1624525
https://inspirehep.net/literature/1624525
https://inspirehep.net/literature/442970
https://inspirehep.net/literature/1494768

dynamical effects /

/
@

dwarf galaxies: stars are dynamically heated and size of stellar component increased
Brandt; Koushiappas & Loeb; Zhu et al.; Stegmann et al.

wide binaries: dynamically heated, separations increased, and widest binaries
disrupted. Yoo, Chaname & Gould; ... Monroy-Rodriguez & Allen; Tyler, Green & Goodwin
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https://inspirehep.net/literature/1458241
https://inspirehep.net/literature/1590001
https://inspirehep.net/literature/1630757
https://inspirehep.net/literature/1758633
https://inspirehep.net/literature/624102
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..159M/abstract
https://inspirehep.net/literature/2116383

accretion . ';«22

Radiation emitted due to gas accretion onto PBHs can modify the recombination
history of the universe, constrained by

distortion of CMB anisotropies Ricotti et al; Ali-Haimoud & Kamionkowski; ... Poulin et al....

EDGES 21cm measurements Hekior et al.:

Accretion onto PBHs today constrained by
X-ray and radio emission in MW Gaggero et al; Inoue & Kusenko; Manshanden et al.

gas-heating in dwarf galaxies Lu et al.
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https://inspirehep.net/literature/759908
https://inspirehep.net/literature/1504879
https://inspirehep.net/literature/1609760
https://inspirehep.net/literature/1664384
https://inspirehep.net/literature/1501443
https://inspirehep.net/literature/1597536
https://inspirehep.net/literature/1710085
https://inspirehep.net/literature/1805298

uncertainty in constraint from distortion of CMB anisotropies

from geometry of accretion (spherical or disc) Poulin et al. and outflows Piga et al.
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https://inspirehep.net/literature/1609760
https://inspirehep.net/literature/2172360
https://inspirehep.net/literature/2172360

constraints on asteroid mass PBHSs
from interactions with stars

Stars can capture asteroid mass PBHs through dynamical friction, accretion onto PBH
can then destroy the star. Capela, Pshirkov & Tinyakov; Pani & Loeb; Montero-Camacho et al.

Transit of asteroid mass PBH through white dwarf heats it, due to dynamical friction,
causing it to explode. Graham, Rajendran & Varela

Montero-Camacho et al. NO current constraints, but potential future constraints from

) survival of neutron stars in globular cluster if it has DM halo (need high DM
density, low velocity-dispersion environment),

i) signatures of star being destroyed.

Esser & Tinyakov potential constraints from disruption of main sequence stars in dwarf
galaxies, due to PBH capture during star formation.



https://inspirehep.net/literature/1215287
https://inspirehep.net/literature/1277033
https://inspirehep.net/literature/1740010
https://inspirehep.net/literature/1740010
https://inspirehep.net/literature/1370642
https://inspirehep.net/literature/2115368

constraints on light PBHs '\/\/“';
from evaporation products ;\/\/“

Evaporation products (gamma rays, et ... ) from PBHSs reaching the end of their lifetime
would be detectable/have observable consequences.
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See also Auffinger review.


https://inspirehep.net/literature/2091707

supernova microlensing

Lensing magnification distribution of type 1a SNe affected (most lines of sight are
demagnified relative to mean, plus long-tail of high magnifications): Zumalacarregui & Seljak

magnification distribution f PBH abundance constraints
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Garcia-Bellido, Clesse & Fleury argue priors on cosmological parameters are overly restrictive
and physical size of supernovae have been underestimated.



Transit of asteroid mass PBH through white dwarf heats it, due to dynamical friction,
causing it to explode. Graham, Rajendran & Varela.

Population of faint, Calcium-rich

supernovae mostly located at large 0.1
. =
distances from centre of host galaxy, &
could be due to PBHs interacting with = 0
_ _ o 0.01E
low mass white dwarfs in dwarf !
galaxies?? B
Smirnov et al. 1073
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Smirnov et al.

But observational signature of PBH-induced white dwarf explosion not yet
reliably calculated. Montero-Camacho et al.



https://inspirehep.net/literature/1370642
https://inspirehep.net/literature/1740010
https://inspirehep.net/literature/2174640
https://inspirehep.net/literature/2174640

lcarus

When a distant star crosses a galaxy cluster caustic get huge magnification which can
be increased by microlensing by compact objects (stars, black holes,..) in cluster. Miralda-
Escude.

However if large fraction of DM is in compact objects magnification is reduced.

magnification Kelly et al.
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Icarus is first (serendipitously) observed event involving a star at red-shift 1.5. Kelly et
al.

Constraint from lcarus: f < 0.08 (but factor of 2 uncertainty in transverse velocity leads to
similar uncertainty on f). Oguri et al.



Icarus is first (serendipitously) observed event involving a star at red-shift 1.5. Kelly et al.

MACS J1149.6+2223

LS1 ;
Hubble Fr.t'U Fields -
Hubble Space Telescope

LS

WFC3 /IRFELOOSWH+F125W

Kelly et al.

Constraint from lcarus: f < 0.08 (but factor of 2 uncertainty in transverse velocity leads to
similar uncertainty on f). Oguri et al.



constraints on light PBHs from evaporation products

Extragalactic gamma-rays background (EGRET/Fermi) Carr, Kohri, Sendouda & Yokoyama

MeV galactic diffuse flux (INTEGRAL) Laha, Munoz & Slatyer (COMPTEL) Coogan, Morrison & Profumo

damping of CMB anisotropies during recombination (Planck) Poulin et al.; Clark et al.

+
e~ flux (Voyager 1) Boudaud & Cirelli

. + o
511 keV line from €7 annihilation (INTEGRAL) DeRocco & Graham; Laha

heating of ISM in dwarf galaxy Kim
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https://inspirehep.net/literature/841370
https://inspirehep.net/literature/1789419
https://inspirehep.net/literature/1822248
https://inspirehep.net/literature/1495210
https://inspirehep.net/literature/1505564
https://inspirehep.net/literature/1681480
https://inspirehep.net/literature/1740484
https://inspirehep.net/literature/1741100
https://inspirehep.net/literature/1807016

how to constrain asteroid mass PBHs??

Femtolensing of GRBs

Different path lengths lead to phase differences, and hence interference fringes in
energy spectrum of lensed GRBSs. Gould

Barnacka, Glickenstein & Moderski constraints from Fermi Gamma Ray Burst monitor.

Energy E [keV] (for M=10""M_, z;=1)
10 10! 10

BUT Katz, K ibiryakov, Xue Most 3.0 » - -
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Constraints could be achieved in a future with a sample of GRBs with well-measured
red-shift and spectra, and small size (which is expected to correspond to sub-milli-second
variability).



Observational signatures 7?77

Carr, Clesse, Garcia-Bellido, Hawkins & Kuhnel, arXiv:2306.03903, ‘Observational evidence for PBHs: a
positivist perspective’ and references therein.
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SNe: trigger explosions of white dwarfs — calcium-rich supernovae

HSC, OGLE, MACHO, OGLE-Gaia: microlensing

PTA: scalar induced gravitational waves detected by pulsar timing arrays

LVK: LIGO-Virgo-Kagra gravitational wave events

C-C: producing cores in density profiles of dwarf galaxies

CIB-XRB: accretion + clustering explains correlations in infra-red and X-ray backgrounds
UFDGs: clustering explains minimum mass & size of ultra faint dwarf galaxies

SMBHs: provide seeds for super massive black holes


https://inspirehep.net/literature/2666549

Method for applying delta-function constraints to extended mass functions:

Carr, Raidal, Tenkanen, Vaskonen& Veermae, see also Bellomo, Bernal, Raccanelli & Verde:

If fmax(M) is the maximum allowed PBH fraction for a delta-function MF, an extended
mass function (M) has to satisfy:

V(M)
/ M an ="




For more realistic extended mass functions, constraints on f are smeared out, and
gaps between constraints are “filled in’:

Green; Carr et al.
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https://inspirehep.net/literature/1783055
https://inspirehep.net/literature/1485171
https://inspirehep.net/literature/1599812

Future constraints

100

—_
=
—

Dark Matter Fraction
=

—_
N
w

Roman M31 Microlensing Rubin MW Microlensing

eV gamma ray

1074 .. : : : : : :
0-®¥/ 107 1072 10  107% 1073 109 102 109

Compact Object Mass (M)

Bird et al. (Showmass PBH white paper)

But for M < 10~ M, microlensing amplification reduced due to:
) finite source size

i) wave optics (wavelength of light similar to Schwarzschild radius of PBH).
Sugiyama et al. and references therein.



https://inspirehep.net/literature/2054306
https://inspirehep.net/literature/1735170

Open guestions

) how to probe asteroid mass PBHs?

femtolensing of GRBs Gould need small GRBs Katz et al.

GRB lensing parallax Nemiroff & Gould; Jung & Kim

microlensing of X-ray pulsars Bai & Orlofsky

Interactions with stars? see e.g. Montero-Camacho et al.
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https://inspirehep.net/literature/394833
https://inspirehep.net/literature/1747565
https://ui.adsabs.harvard.edu/abs/1992ApJ...386L...5G/abstract
https://inspirehep.net/literature/1684529
https://inspirehep.net/literature/1842885
https://inspirehep.net/literature/1706804
https://inspirehep.net/literature/1735170
https://inspirehep.net/literature/1740010

Stellar microlensing




gravitational lensing

for an intro see e.g. Sasaki et al.
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along the line of sight
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https://inspirehep.net/literature/1648436

Differential event rate,
assuming a delta-function lens mass function and a spherical halo with a Maxwellian
velocity distribution (and neglecting the transverse velocity of the microlensing tube): [Griest]
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p(x) = compact object density distribution
t = Einstein diameter crossing time (as used by the MACHO collab., EROS

& OGLE use Einstein radius crossing time)

Ve = local circular speed (usually taken to be 220 km/s, ~10s% uncertainty)

Expected number of events:

<dr
Now = E / () di
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E = exposure (number of stars times duration of obs.)

e(t) = efficiency (prob. that an event of duration £ is observed)



Standard halo model
cored isothermal sphere:

R? + R?
RZ 4 r?

p(r) = po

po = 0.008 My pc™?, local dark matter density
R. = 5kpc , core radius

Ry = 8.5kpc , Solar radius

‘Backgrounds’

) variable stars, supernovae in background galaxies

cuts/fits developed to eliminate them (but some events only rejected years later, after star’s
brightness varied a 2nd time!)

ii) lensing by stars in MW or Magellanic Clouds themselves (‘self-lensing’)

model and include in event rate calculation



Differential event rate for M = 1 M, and halo fraction f=1:
(foc MY2, dT/dtoc M)
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= standard halo model

...... = standard halo model including transverse velocity
. . . : .2
- - -- = Evans power law model: massive halo with rising rotation curve, v, x RY

= Evans power law model: flattened halo with falling rotation curve, vc X R

velocity anisotropy can affect rate at ~10% level [De Paolis, Ingrosso & Jetzer]



Observations

MACHO

Monitored 12 million stars in LMC for 5.7 years.

Found 13/17 events (for selection criteria A/B, B less restrictive-picks-up exotic events).

Detection efficiency
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M/Mg

Measurement of fraction of halo in compact objects, f,

10°

101

1n-2

(assuming a delta-function mass function):

selection criteria A B

¥
:

A (Img¢ halo) B, (Im¢ halo)

o

—k

68%, 90%, 95% and 99% confidence contours

—h



BUT

LMC-5: lens identified (using HST obs & parallax fit) as a low mass MW disc star.
[MACHO]

LMC-9: (only satisfied criteria B) lens is a binary, allowing measurement of low
projected velocity, which suggests lens is in LMC (or source is also binary). [MACHO]

LMC-14: source is binary, and lens most likely to lie in LMC. [MACHO]

LMC-20: (only satisfied criteria B) lens identified (using Spitzer obs) as a MW thick disc
star. [Kallivayalil et al.]

LMC-22: (only satisfied criteria B) supernova or an AGN in background galaxy.
[MACHO]

LMC-23: varied again, so not microlensing [EROS/OGLE]



AND

Distribution of timescales is narrower than expected for lenses in MW halo
(assuming standard halo model) [Green & Jedamzik]

X durations of observed events Probability of width of distribution
best fit distribution assuming standard being as small as observed, as a
halo model + delta-function mass function function of number of background
----- best fit gaussian differential event rate events
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OGLE: LMC & SMC

OGLE-II and lll monitored 41 million stars in LMC and SMC for 12 years.

Total of 8 events. All but 1 (SMC-02) consistent (number/duration/lensed star location/
detailed modelling of light curve including parallax) with lens being a star in the MW or MCs.



SMC-02

Light curve shows parallax effect and additional Spitzer observations find deviation
from single lens model [Dong et al.].

Consistent with lens being a ~10 Solar mass BH binary in MW halo.

best-fit binary microlensing fit

standard microlensing fit . .
also including parallax

OGLE I-band Magnitude
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Constraints on fraction of halo in compact objects, f,
(assuming a delta-function mass function):
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Mixed PBH + WIMP DM




mixed PBH-particle dark matter

If PBHs don’t make up all of the DM (0 < fpgu < 1) then isolated PBHs accrete a halo

of particle DM with a steep density profile: p(r) oc 7~%/4
Mack, Ostriker & Ricotti; Adamek et al.; Inman & Ali-Haimoud

Density profile, in physical units, formed around a 30M . PBH
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If the DM were a mixture of PBHs and WIMPs would get large flux of gamma-rays
(and neutrinos and positrons) from WIMP annihilation in halos around PBHs: all of the
DM being a mixture of WIMPs and PBHs is excluded. Lacki & Beacom

If fwimp ~ 1 then fpen = 10-9.
If freH ~ 10-3 (if LIGO-Virgo events are PBH binary mergers) then fwive = 10-6.

Adamek, Byrnes, Gosenca, Hotchkiss



