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Our Motivation and Strategy

• generalize single-field (quintessence) models of viable inflation, having

(i) attractor-type inflationary solutions, (ii) good agreement with CMB, and (iii)

compatibility with supergravity, toward PBH production with minimal number of

extra parameters;

• use minimal no-scale supergravity as the unifying framework for inflation,

PBH production, dark matter, dark energy and spontaneous SUSY breaking;

connect it to MSSM and thus unify our models with high-energy particle physics

beyond the SM via gravity mediation and renormalization.
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Our Tools

• the alpha-attractor models of inflation (Kallosh, Linde, 2013) generalizing

the basic Starobinsky model (1980);

• the PBH formation mechanism based on an ultra-slow-roll phase of infla-

tion between two slow-roll phases, which are generated by a near-inflection point

in the inflaton potential (Ivanov, Naselsky, Novikov, 1994);

• no-scale supergravity implied by heterotic string compactifications and

modified supergravity (Cremmer, Ferrara, Kounnas, Nanopoulos, 1983; Starobin-

sky and SVK, 2011);

• High-Scale SUSY breaking with gravity mediation of SUSY breaking to the

MSSM and the visible sector (Giudice, Strumia, 2014; Addazi, Khlopov, SVK,

2017)
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Plan of talk

• Quintessence and Starobinsky model as the basic example

• Single-field extensions of the Starobinsky potential for viable inflation

• PBH production and induced GW in the generalized models

• Inflation with a near-inflection point in the minimal no-scale supergravity

• Spontaneous high-scale SUSY breaking, dark energy and MSSM

• Renormalization group equations ("run and match" the effective 
parameters), Higgs mass, EW vacuum stability and dark matter

• Conclusion
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Modified gravity

• Modified gravity theories are generally-covariant non-perturbative exten-

sions of Einstein-Hilbert gravity theory by the higher-order terms. These terms

are irrelevant in the Solar system but are relevant in the high-curvature regimes

(inflation, black holes) or for large cosmological distances (dark energy).

• A modified gravity action has the higher-derivatives and generically suffers

from Ostrogradsky instability and ghosts. However, there are exceptions. For ex-

ample, in the modified gravity Largrangian quadratic in the spacetime curvature,

the only ghost-free term is given by R2 with a positive coefficient. It leads to the

Starobinsky model (1980) of modified gravity with the action

SStar. =
M2

Pl

2

∫

d4x
√
−g

(

R+
1

6M2
R2
)

≡
M2

Pl

2

∫

d4x
√
−g F(R) ,

having the only (mass) parameter M , where MPl = 1/
√
8πGN ≈ 2.4 × 1018

GeV, the spacetime signature is (−,+,+,+, ).
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Starobinsky model of inflation

• In the high-curvature regime, the EH term can be ignored and the pure

R2-action becomes scale-invariant.

• The Starobinsky gravity has the special (attractor) solution in the FLRW

universe with the Hubble function

H(t) ≈
(

M

6

)2

(tend − t) ,

for M(tend − t) ≫ 0. This solution spontaneously breaks the scale invariance

of the R2-gravity and, hence, implies the existence of the associated Nambu-

Goldstone boson called scalaron.

• Scalaron is the physical (scalar) excitation of the higher-derivative gravity.

It can be revealed by rewriting the Starobinsky action into the quintessence form
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by the field redefinition (Legendre-Weyl transform)

ϕ =

√

3

2
MPl lnF ′(χ) and gµν → 2

M2
Pl

F ′(χ)gµν , χ = R ,

which leads to

S[gµν, ϕ] =
M2

Pl

2

∫

d4x
√
−gR−

∫

d4x
√
−g

[

1
2g

µν∂µϕ∂νϕ+ V (ϕ)
]

,

with the potential V (ϕ) = 3
4M

2
PlM

2
[

1− exp

(

−
√

2
3ϕ/MPl

)]2
≡ V0[1 − y]2.

This potential is suitable for describing slow-roll inflation with scalaron ϕ as the

inflaton of mass m due to the infinite plateau of the positive height ≈ V0 for

y ≪ 1.

• The UV cutoff of the potential is ΛUV = MPl. The higher-order curvature

terms are supposed to be suppressed by MPl ≫ M . A string theory derivation

of the Starobinsky inflation is still challenging (unknown).



Starobinsky model (1980) and CMB measurements (2020)

No phenomenological input was used so far. Nevertheless, the very simple

Starobinsky model of inflation is still in excellent agreement with the current CMB

measurements (Planck, BICEP/Keck).

A duration of inflation is usually measured by the e-foldings number

N =

∫ tend

t∗
H(t)dt ≈ 1

M2
Pl

∫ ϕ∗

ϕend

V

V ′dϕ .

The standard slow roll parameters are defined by

εsr(ϕ) =
M2

Pl

2

(

V ′

V

)2

and ηsr(ϕ) = M2
Pl

(

V ′′

V

)

.
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The amplitude of scalar (curvature) perturbations at the horizon crossing with

the pivot scale k∗ = 0.05 Mpc−1 is determined by the WMAP normalization,

As =
V 3
∗

12π2M6
Pl(V∗

′)2
=

3M2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)

≈ 1.96 · 10−9

that implies no free parameters in the Starobinsky model,

M ≈ 3 · 1013 GeV or
M

MPl
≈ 1.3 · 10−5 , and H ≈ O(1014) GeV .

The CMB measurements give the tilt of scalar perturbations ns ≈ 1 + 2ηsr −
6εsr ≈ 0.9649 ± 0.0042 (68%CL) and restrict the tensor-to-scalar ratio as

r ≈ 16εsr < 0.032 (95%CL). The Starobinsky inflation gives r ≈ 12/N2 ≈
0.003 and ns ≈ 1− 2/N , with the best fit at N ≈ 55.



Single-field extensions of Starobinsky potential

The Starobinsky inflaton potential can be generalized to the α-attractors (Kallosh,

Linde, 2013) either by modifying the exponential term as (called E-models)

y = exp



−
√

2

3α

ϕ

MPl





with the parameter α > 0, or/and by using another function (called T-models)

V (ϕ) = V0 tanh
2

(

ϕ/MPl√
6α

)

≡ V0u
2 , u = tanh

ϕ/MPl√
6α

.

These extensions maintain the Mukhanov-Chibisov formula for the tilt of scalar

perturbations, ns ≈ 1− 2
N but modify the tensor-to-scalar ratio as rα ≈ 12α

N2 , so

that rα ≈ 3α(1− ns)2.

7



Further generalizations of T-models and E-models

It is possible to go further, while keeping agreement with CMB observations, by

defining the generalized T-type α-attractors with the scalar potential (Kallosh,

Linde, 2013)

VT−gen.(ϕ) = f2
(

tanh
ϕ/MPl√

6α

)

≡ f2(u) ,

and the generalized E-type α-attractors (Vernov, Pozdeeva, SVK, 2021) with the

potential

VE−gen.(ϕ) =
3
4M

2
PlM

2
[

1− y + y2ζ(y)
]2

,

with regular functions f(u) and ζ(y) that do not significantly affect the CMB tilts.

The idea: use this functional freedom to produce PBH on the scales below the

inflationary scale. (See also Dalianis, Kehagias, Tringas, 2019). The Starobinsky

model is reproduced with α = 1, ζ(y) = 0 and f(u) =
√
3M2

PlM
2u/(1+ u).
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Power spectrum of perturbations

Primordial scalar perturbations (ζ) and tensor perturbations g (primordial GW)

are defined by a perturbed FLRW metric,

ds2 = dt2 − a2(t)
(

δij + hij(~r)
)

dxidxj , i, j = 1,2,3 ,

where

hij(~r) = 2ζ(~r)δij +
∑

b=1,2

g(b)(~r)e
(b)
ij (~r) , H =

da/dt

a
,

in terms of a local basis e(b) with e
i(b)
i = 0, g

(b)
,j e

j(b)
i = 0, e

(b)
ij eij(b) = 1.

The primordial spectrum Pζ(k) of scalar (density) perturbations is defined by the

2-point correlation function of scalar perturbations,
〈

δζ(x)

ζ

δζ(y)

ζ

〉

=

∫

d3k

k3
eik·(x−y)Pζ(k)

P0
.
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For instance, the observed CMB power spectrum is described by the Harrison-

Zeldovich fit,

PHZ
ζ (k) ≈ 2.21+0.07

−0.08 × 10−9
(

k

k∗

)ns−1

with the pivot scale k∗ = 0.05 Mpc−1. In the slow-roll (SR) approximation,

relevant for inflation, one finds

Pζ =
H2

8M2
Plπ

2

(

1

εsr

)

.

Therefore, it is possible to generate a large peak (enhancement) in the power

spectrum by engineering ǫsr → 0, called the ultra-slow-roll (USR) regime or the

PBH production mechanism based a near-inflection point in the potential. This

implies the double inflation scenario (SR → USR → SR) with two plateaus in the

potential V (ϕ) and in the Hubble function H(t). Warning: USR is not SR !



Our generalized E-model

is defined by the potential with the dimensionless parameters (α, β, γ, θ) as

V (ϕ) =
3

4
M2

PlM
2
[

1− y + θy−2 + y2(β − γy)
]2

, y = exp



−
√

2

3α

ϕ

MPl



 .

Let us replace (β, γ) with the new parameters (φi, ξ) having better meaning as

β =
1

1− ξ2
exp





√

2

3α

φi
MPl



 , γ =
1

3(1− ξ2)
exp



2

√

2

3α

φi
MPl



 .

When ξ = 0, the potential has an inflection point at φ = φi; when 0 < ξ ≪ 1,

there is also a local minimum (dip) y−ext on the r.h.s. of φi and a local maximum

(bump) y+ext on the l.h.s. of φi, while both extrema are equally separated from

the inflection point, y±ext = yi (1± ξ), (see also Iacconi, Assadullahi, Fasiello,

Wands, 2021, for using this parametrization).
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Good features of our model

(i) the existence of an attractor inflationary solution in good agreement with CMB

measurements of the scalar tilt ns ≈ 0.965 within 1σ and the tensor-to-scalar

ratio r < 0.032,

(ii) the two extra terms with the fine-tuned coefficients (β, γ) are needed for

engineering a near-inflection point in the scalar potential and a large enhance-

ment (peak) in the power spectrum of scalar perturbations, with the factor of 107

against the CMB level,

(iii) adding another term with a negative power of y and a small negative coef-

ficient θ removes the infinite (Starobinsky) plateau, thus restricting from above

the total number of e-folds for inflation, while being also needed for better (within

1σ) agreement with the observed tilt ns of CMB.
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USR regime

To study the USR regime, we introduce the Hubble flow functions

ε(t) = − Ḣ

H2
, η(t) =

ε̇

Hε
.

During the USR regime, the function ε(t) drops to very low values, whereas the
function η(t) goes from nearly zero to (−6) and back.

A standard procedure of (numerically) computing the power spectrum PR(k)

of scalar (curvature) perturbations depending upon scale k is based on the
Mukhanov-Sasaki (MS) equation. We used both approaches in our models and
found that the difference between the results from numerically solving the MS
equation and those derived from the SR formula is small.
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Numerical results 
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with    α=0.743,  ξ=0.012



Numerical results
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Comparison of our results from  the Mukhanov-Sasaki equation 
 for perturbations and from the slow-roll approximation formula
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PBH masses

PBH may be formed by gravitational collapse of large density perturbations (Carr,

Hawking, 1974). The masses of PBH can be estimated from given peaks (power

spectrum enhancement) as follows (Pi, Sasaki, 2017):

MPBH ≃
M2

Pl

H(tpeak)
exp

[

2(Ntotal −Npeak) +
∫ ttotal

tpeak
ε(t)H(t)dt

]

that is very sensitive to the value of ∆N = Ntotal − Npeak, while the integral

gives a sub-leading correction. Increasing ∆N leads to decreasing the tilt ns of

CMB, which limits ∆N by 20 from above. On the other hand, ∆N cannot be too

small when MPBH have to exceed the Hawking (black hole) evaporation limit of

1015 g, which restricts ∆N from below (above 13).

After fine-tuning the parameters ξ and θ, we obtained the PBH masses in the

asteroid-size range between 1017 g and 1021 g. Compare M⊙ ≈ 2 · 1033 g.
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Energy density of PBH induced GW

The present-day GW density function ΩGW in the 2nd order with respect to

perturbations is given by (Espinosa, Racco, Riotto, 2018)

ΩGW(k)

Ωr
=

cg

72

∫ 1√
3

− 1√
3

dd
∫ ∞

1√
3

ds





(s2 − 1
3)(d

2 − 1
3)

s2 + d2





2

× Pζ(kx)Pζ(ky)
(

I2c + I2s
)

,

where the constant cg ≈ 0.4 in the SM, and Ωr = 8.6 · 10−5 according to the

present CMB temperature.

The variables (x, y) are related to the integration variables (s, d) as

x =

√
3

2
(s+ d) , y =

√
3

2
(s− d) .
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The functions Ic and Is of x(s, d) and y(s, d) are (Espinosa, Racco, Riotto,

2018)

Ic = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s− 1) ,

Is = −36
s2 + d2 − 2

(s2 − d2)2

[

s2 + d2 − 2

s2 − d2
ln

∣

∣

∣

∣

∣

d2 − 1

s2 − 1

∣

∣

∣

∣

∣

+2

]

.

In our models, ΩGW(k) ∼ 10−6P2
R(k). Frequencies of PBH-induced GW are

simply related to PBH masses as (De Luca, Franciolini, Riotto, 2020)

f ≈ 5.7

(

M⊙
MPBH

)1/2

10−9 Hz

that implies ∼ 10−3 Hz in our models, cf. NANOGrav GW frequences of 3 to 400 nHz.



Numerical results 
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   with the peak width σ



PBH production in modified gravity after Starobinsky inflation

We propose the modified Appleby-Battye-Starobinsky (ABS) model (2010) of

F(R) gravity for that purpose, defined by the smooth F -function

F(R) = (1− g1)R+ gEAB ln







cosh
(

R
EAB

− b
)

cosh(b)





+
R2

6M2
− δ

R4

48M6
,

where g1 = −g tanh b, g ≈ 2.25 and b ≈ 2.89, 0 < δ < 4 · 10−6, and

EAB =
R0

2g ln(1 + e2b)
with R0 ≈ 3M2, M ∼ 10−5MPl .

It is consistent with Starobinsky inflation and CMB measurements, has no ghosts

(F ′(R) > 0, F ′′(R) > 0), and the corresponding inflaton potential has two

plateaus, leading to a large peak in the power spectrum. The last term can be

interpreted as a quantum correction.

19



Consistency with CMB, and PBH masses

Demanding:

(i) a large enhancement (peak) in the power spectrum by the factor of 107

against the CMB level of 10−9,

(ii) consistency with the latest CMB measurements,

ns = 0.9649± 0.0042 (within 1σ) and r < 0.032, and

(iii) PBH masses beyond 1015 g,

we found ∆N must be restricted between 17 and 22 e-folds, while the total du-

ration of inflation is between 54 and 66 e-folds.

The possible range of the parameter δ is between 1.02 ·10−8 and 8.74 ·10−8.

The PBH masses found are between 1016 g and 1020 g, i.e. of the asteroid-size

again.
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Numerical results 

1
8

   Potential and dynamics



Numerical results 

1
8

    Hubble flow parameters and power spectrum



Modified supergravity

Modified supergravity is the (old-minimal) N = 1 local SUSY extension of the
(R+ αR2) gravity. Manifest SUSY is achieved by using curved superspace. A
generic action is given by a sum of D-type and F-type terms,

S =
∫
d4xd4θE−1N(R, R̄) +

[∫
d4xd2Θ2EF(R) + h.c

]
,

where the covariantly chiral superfield R has the spacetime scalar curvature R
among its field component. See also Dalianis, Farakos, Kehagias, Riotto, Unge
(2015).
The Starobinsky inflation scale H ∼ 1014 GeV (close to the GUT scale) is the
scale where SUSY is expected to play a significant role.
The F-term can be included into the D-term (except a constant). We distinguish
them by collecting the R-symmetry preserving terms in the N -potential, and the
R-symmetry violating terms in the F-potential.
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Superfield transfer to Einstein matter-coupled supergravity

After introducing the Lagrange multiplier superfield T as (Terada and SVK, 2013)

L =
∫
d2Θ2E

{
−1

8(D2 − 8R)N(S,S) + F(S) + 6T(S−R)
}
+h.c. ,

varying the Lagrangian w.r.t. the T gives back the original Lagrangian. On the 
other hand, the Lagrangian can be rewritten to the form

L =
∫
d2Θ2E

{
3
8(D2 − 8R)

[
T+T− 1

3N(S,S)
]
+ F(S) + 6TS

}
+h.c.

that can be put into the standard form in supergravity,

L =
∫
d2Θ2E

[
3
8(D2 − 8R)e−K/3 +W

]
+h.c. ,

where the Kähler potential K takes the no-scale supergravity form

K = −3 log(T+T− Ñ) , Ñ ≡ SS− 3
2ζ(SS)

2 ,
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but the modified supergravity origin of K and W becomes hidden.
See also  Ellis, Nanopoulos and Olive (2013);  first observed by Cecotti (1987).



Minimal No-scale Supergravity I

is obtained by identifying the inflaton superfield T with the goldstino superfield S
(Terada, SVK, 2014). The scalar potential in supergravity reads (MPl = 1)

VSUGRA = eG
[
G,T

(
G,T T̄

)−1
G,T̄ − 3

]

where G = K + ln |W |2. For example, when K = −3 ln(T + T̄ ) and W =

W0T
3, one gets V = 0, while SUSY can be broken along a flat direction.

Spontaneous SUSY breaking occurs when 〈FT 〉 
= 0 with m3/2 =
〈
eG/2

〉
.

Then goldstino is eaten up by gravitino (the well known super-Higgs mechanism).
To realize inflation with V > 0, one can add a stabilizing term as (Pallis, 2023)

K = −p ln
[
T + T̄ + ξ2(T + T̄ − 2v)4

]
with the new parameters (p, ξ, v).
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Minimal No-scale Supergravity II

The superpotential is fixed by demanding no-scale (V = 0) in the absence of
the stabilizing term (ξ = 0). It yields

W =W1 +W2, W1,2 = m1,2T
q1,2, q1,2 =

1

2

(
p±√

3p
)
,

with mass scalesm1,2. Them1 is identified with the inflation scale ∼ 1013 GeV,
and m2 is identified with the dark energy (c.c.) scale ∼ 10−3 eV.
The stabilizing term breaks no-scale, leading to a positive potential, selects the
vacuum with 〈T 〉 = v, and stabilizes the inflationary trajectory along T = T̄ by
giving a mass O(minf) to sinflaton (phase of T ). Good solutions (without branch
cuts) arise for integer powers q1,2. For instance, q1,2 = (3,9) for p = 12.
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Minimal No-scale Supergravity, PBH and MSSM

The remaining parameters can be tuned as ξ ≈ 1.6 and v ≈ 0.25 to get a near-

inflection point in the effective single-field inflaton potential (Pallis, 2023), which

leads to the PBH production very similar to that obtained in our models without

SUSY. However, there is much more!

Spontaneous high-scale SUSY breaking takes place with m3/2 ∼ 1011 GeV.

The MSSM can be added to the minimal no-scale supergravity at the high scale

by modifying the superpotential and the Kähler potential, W → W + WMSSM
and K → K +KMSSM, where

WMSSM = hαβγΦαΦβΦγ + µHuHd , Φα = (Q,L, dc, uc, ec, Hd, Hu) ,

and KMSSM =
∑

α |Φα|2. The EFT is then obtained by the RGE renormalizing

the parameters (hαβγ, µ) by the factor 〈T 〉−p/2 and leading to soft SUSY break-

ing terms after decoupling of supergravity in the limit MPl → ∞. Consistency

with the observed Higgs mass MH = (125.15± 0.25) GeV is also achieved.
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High-scale SUSY breaking, MSSM and Higgs mass

HSM = Hu sin β+H
†
d cos β , λSUSY = 1

4

(
g21 + g22

)
cos2 2β ,

mH = (125.15 ± 0.25) GeV , mt = (173.134 ± 0.76) GeV ,

imply via the MSSM 2-loop RGE (Giudice, Strumia, 2014)

m3/2 ≤ O(1012) GeV and tan β ∼ O(1) ,
as well as stability of the EW vacuum. However, SUSY cannot be responsible
for the hierarchy mH/MPl ∼ 10−16, cf. the cosmological constant fine-tuning 
of 10−120.
• Baryogenesis via non-thermal leptogenesis can be activated, cf. Jeong,

Kamada, Starobinsky, Yokoyama (2023) for Starobinsky inflation+supermassive 
RH Majorana neutrinos.
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In the gravity decoupling limit, soft SUSY breaking terms ensure stability.



Conclusion I

• Our approach is motivated by modified gravity and supergravity, leads to
viable inflation, efficient PBH production and induced GW, and can be consis-
tently connected to MSSM and SM.

• The PBH masses are possible in the window from 1017 g to 1021 g, in all
our models. Those PBH may form (the whole or part of) current dark matter.

• The PBH-induced GW may be detectable by the future space-based grav-
itational interferometers (LISA, DECIGO, TianQin, Taiji) with mHz frequency.

• The near-inflection mechanism of PBH production can be employed in the
minimal no-scale supergravity with the stabilizing term and viable single-large-
field inflation.
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This is different from multi-field inflation and PBH: SUSY2023 in UK.



Conclusion II

• Unification of inflation and PBH production with high-scale SUSY break-
ing, MSSM and dark energy (tiny c.c.) is possible in the minimal no-scale super-
gravity in agreement with the known Higgs mass and the (meta)stable EW scale
(λH ≥ 0). There is no Polonyi problem and no overproduction problem but no
SUSY explanation for the scale hierarchy (fine tuning).

• After inflation, inflaton decays into other particles (gravitinos, etc.), while
heavy LSP gravitinos with the mass of O(1011) GeV is also a candidate for dark 
matter (Addazi, Khlopov, SVK, 2017). In our model, Treh ∼ 107 GeV.

• PBH production during inflation in supergravity leads to the significant
constraints on the parameters of high-energy particle physics and strong pre-
dictions: (i) high-scale SUSY breaking, (ii) PBH & gravitino DM, (iii) the MSSM
mixing angle, tanβ ≈ 1, etc.
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