Primordial Black Holes
 from R^{2} gravity theory with a non-minimally coupled scalar field

Xinpeng Wang

Tongji University (Shanghai, China) \& Kavli IPMU (Chiba, Japan)
XW, Misao Sasaki \& Ying-li Zhang, in preparation.

Contents

1. Introduction (Why do we establish this model).
2. The details (of the scenario and calculation).
3. Application (PBH and SIGW formation)
4. Conclusion and Further thinking

Inflation and Primordial Black Holes (PBHs)

Zel'dovich and Novikov, 1966; Hawking, 1971

BHs form in the early universe!

1. Large density perturbation
2. Domain Wall
3. Vacuum bubbles
4. Cosmic string loops
5. Q balls

Inflation and Primordial Black Holes (PBHs)

Inflation and Primordial Black Holes (PBHs)

Candidate for SMBHs Galatic Core?
/Subsolar mass BHs OGLE Observation?

Main Target and Previous Works

Fit the CMB Observation.
Produce big Curvature Power Spectrum $\mathscr{P}_{\mathscr{R}} /$ POSITIVE Non-Gaussianity at $k>k_{\mathrm{CMB}}$. End inflation in 50-60 e-folds.

Main Target and Previous Works

R^{2} gravity and a non-minimally coupled scalar field -——2 stage slow rolls connected by a right angle turn of inflation Shi Pi, Ying-li Zhang, Qing-Guo Huang and Misao Sasaki, 2017 (1712.09896)

$$
\begin{aligned}
& S_{J}=\int d^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{pl}}^{2}}{2} f(R)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \partial_{\nu} \chi-V(\chi)\right] \\
& f(R)=R+\frac{R^{2}}{6 M^{2}}-\frac{\xi R}{M_{\mathrm{pl}}^{2}} \chi^{2} \\
& V(\chi)=V_{0}-\frac{1}{2} m^{2} \chi^{2}
\end{aligned}
$$

Fit the CMB Observation.

Produce monochromatic PBH mass function.

Main Target and Previous Works

R^{2} gravity and a non-minimally coupled scalar field -——2 stage slow rolls connected by a right angle turn of inflation Shi Pi, Ying-li Zhang, Qing-Guo Huang and Misao Sasaki, 2017 (1712.09896)

Fit the CMB Observation.

Produce monochromatic PBH mass function.

Main Target and Previous Works

R^{2} gravity and a non-minimally coupled scalar field -——2 stage slow rolls connected by a right angle turn of inflation Shi Pi, Ying-li Zhang, Qing-Guo Huang and Misao Sasaki, 2017 (1712.09896)

Perturbation evolution after exit the horizon? Iso-Curvature?
End inflation in 50-60 e-folds?
Non Gaussianity? SIGW?

Our model: The potential

Action in Jordan frame:
$S_{J}=\int d^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{pl}}^{2}}{2} f(R)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \partial_{\nu} \chi-V(\chi)\right]$,
$f(R)=R+\frac{R^{2}}{6 M^{2}}-\frac{\xi R}{M_{\mathrm{pl}}^{2}}\left(\chi-\chi_{0}\right)^{2}$,
$V(\chi)=V_{0}-\frac{1}{2} m^{2} \chi^{2}+\frac{1}{4} \lambda \chi^{4}$.

Conformal Transformation

$$
F \equiv \partial f / \partial R=e^{\sqrt{2 / 3} \phi / M_{\mathrm{pl}}}
$$

Two scalar fields ϕ, χ in Einstein frame

Our model: The potential

Action in Jordan frame:
$S_{J}=\int d^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{pl}}^{2}}{2} f(R)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \partial_{\nu} \chi-V(\chi)\right]$,
$f(R)=R+\frac{R^{2}}{6 M^{2}}-\frac{\xi R}{M_{\mathrm{pl}}^{2}}\left(\chi-\left(\chi_{0}\right)^{2}\right.$, Drive the 2 nd $\mathbf{~ S R}$
$V(\chi)=V_{0}-\frac{1}{2} m^{2} \chi^{2}+\frac{1}{4} \lambda \chi^{4}$. End the Inflation

Conformal Transformation

FF $F \partial f / \partial R=e^{\sqrt{2 / 3} \phi / M_{\mathrm{pl}}}$

Our model: Background

$$
\mathscr{N}_{1}=\mathscr{N}_{1}(\phi)=\frac{3}{4}\left(F_{\text {ini }}-F_{\star 1}\right)
$$

Inflaton rolls along ϕ direction (R^{2} inflation), χ behaves like a damped* oscillator around χ_{0}.

Our model: Background

$$
\mathscr{N}_{2}=\frac{1}{3} \ln \left[\frac{4}{3} \mu^{2}\left(\frac{\phi_{\star}}{M_{\mathrm{pl}}}\right)^{2}\right]=\text { const } .
$$

$\mu^{2} \equiv H_{1} / H_{2}$

The slow roll is shortly violated by inflaton's oscillation along ϕ direction.
χ accelerates to attractor phase.

Our model: Background
 $$
\mathcal{N}_{3}=\mathcal{N}_{3}(\chi)=\frac{1}{4 \xi(A-1)} \ln \left[\frac{\sqrt{2}}{4}\left(\frac{\chi_{g}}{M_{\mathrm{pl}}}\right)\left(\frac{\chi_{g}}{\chi_{0}}\right)\right]
$$

Inflation rolls along χ direction,
ϕ behaves like a
under-damped
oscillator around it's potential valley. The inflation ends when $\epsilon_{H}(\chi)=1$.

Our model: Perturbations

Numerical results

Co-moving Curvature $\quad \mathscr{R}=H \frac{\dot{\phi} \delta \phi+F^{-1} \dot{\chi} \delta \chi}{\dot{\phi}^{2}+F^{-1} \dot{\chi}^{2}}$, Iso-Curvature

$$
\mathcal{S}=H F^{-1 / 2} \frac{\dot{\chi} \delta \phi-\dot{\phi} \delta \chi}{\dot{\phi}^{2}+F^{-1} \dot{\chi}^{2}}
$$

A generalized description of our model Field vector

$$
\psi^{a}=(\phi, \chi)
$$

Field Metric

$$
h_{a b}=\left(\begin{array}{rr}
& 1 \\
0 & F^{-1}
\end{array}\right), \quad a, b=1,2
$$

The Equations of motion:

$$
\begin{aligned}
& \frac{D \dot{\psi}^{a}}{d t}+3 H \dot{\psi}^{a}+h^{a b} U_{, b}=0 \\
& \frac{D^{2} \delta \psi_{k}^{a}}{d t}+3 H \frac{D \delta \psi_{k}^{a}}{d t}+\frac{k^{2}}{a^{2}} \delta \psi_{k}^{a}+V_{; b}^{; a} \delta \psi_{k}^{b}-R_{b c d}^{a} \dot{\psi}^{b} \dot{\psi}^{c} \delta \psi_{k}^{d}-\left[\frac{1}{a^{3}} \frac{d}{d t}\left(\frac{a^{3}}{H} \dot{\psi}^{a} \dot{\psi}^{b}\right)\right] h_{b c} \delta \psi_{k}^{b}=0
\end{aligned}
$$

Our model: Perturbations

Numerical results

Co-moving Curvature

$$
\mathscr{R}=H \frac{\dot{\phi} \delta \phi+F^{-1} \dot{\chi} \delta \chi}{\dot{\phi}^{2}+F^{-1} \dot{\chi}^{2}}
$$

Iso-Curvature

$$
\mathcal{S}=H F^{-1 / 2} \frac{\dot{\chi} \delta \phi-\dot{\phi} \delta \chi}{\dot{\phi}^{2}+F^{-1} \dot{\chi}^{2}}
$$

$N_{\text {end }} — — —$ Time at the end of Inflation
$N_{\text {exit }}---$ Time at the Horizon exit stage

Our model: Perturbations

$\delta \mathcal{N}$ formalism kodama \& Sasaki, 1984

Sasaki \& Stewart, 1995 (astro-ph/9507001)

$$
\begin{aligned}
& \delta \mathscr{N}(k)=\sum_{i} \delta \mathscr{N}_{i} \\
& \approx\left\{\begin{array}{l}
\delta \mathscr{N}_{1}(\phi)+\delta \mathscr{N}_{3}(\chi) \quad \text { for } k<k_{1} \\
\delta \mathscr{N}_{3}(\chi) \quad \text { for } k \geq k_{1}
\end{array}\right. \\
& =\left\{\begin{array}{l}
\left.\frac{\partial \mathscr{N}_{1}}{\partial \phi}\right|_{N=N_{k}} \delta \phi_{k}\left(N_{k}\right)+\left.\frac{\partial \mathcal{N}_{3}}{\partial \chi}\right|_{N=N_{\star 2}} \delta \chi_{k}\left(N_{\star 2}\right) \quad \text { for } k<k_{1} \\
\left.\frac{\partial \mathscr{N}_{3}}{\partial \chi}\right|_{N=N_{k}} \delta \chi_{k}\left(N_{k}\right) \quad \text { for } k \geq k_{1}
\end{array}\right.
\end{aligned}
$$

Our model: Perturbations

Analytical Approximation

$$
\mathscr{P}_{\mathscr{R}}(k) \approx \frac{M^{2}}{4(2 \pi)^{2}}\left\{\begin{array}{l}
{\left[\frac{2}{3}\left(\ln \frac{k_{1}}{k}+\frac{3}{4} F_{\star}\right)^{2}+g_{1}^{2} h^{2} \chi_{0}^{-2}\left(\frac{k}{k_{1}}\right)^{\alpha}\right] \times\left[1+\left(\ln \frac{k_{1}}{k}+\frac{3}{4} F_{\star}\right)^{-1}\right] \quad \text { for } k<k_{1}} \\
g_{2}^{2} h^{2} \chi_{0}^{-2} \mu^{-2}\left(\frac{k}{k_{1}}\right)^{\beta} \quad \text { for } k \geq k_{1} .
\end{array}\right.
$$

α is determined by

the oscillation behavior of
χ in the end first stage!

$$
\begin{aligned}
& \text { Broken power-Iaw! } \\
& \alpha \equiv \operatorname{Re}\left(3-3 \sqrt{1-\frac{16}{3} \xi}\right) \\
& \beta \equiv 3-\sqrt{3+\frac{48 \xi(A-1)}{1+1 / \mu^{2}}},
\end{aligned} \underbrace{\text { смв }^{\mathcal{P}_{\mathcal{R}}(k)}}_{k}
$$

Our model: Perturbations

Analytical Approximation
$\mathscr{P}_{\mathscr{R}}^{\text {peak }} \approx \mathscr{P}_{\mathscr{R}}\left(k_{1}\right)=\frac{g_{2}^{2} h^{2}}{4(2 \pi)^{2}} \mu^{-2}\left(M / \chi_{0}\right)^{2}$
$\mu^{2} \gg 1$ is the ratio of H_{1} to H_{2}
χ_{0} / M is the ratio of field perturbation to background

Broken power-law!

$\alpha \equiv \operatorname{Re}\left(3-3 \sqrt{1-\frac{16}{3} \xi}\right)$

$\beta \equiv 3-\sqrt{3+\frac{48 \xi(A-1)}{1+1 / \mu^{2}}}$,

PBH formation - A brief discussion of NG (at the peak)

$$
\mathscr{R}=\delta \mathcal{N}_{3}=\frac{\rho_{1}}{M_{\mathrm{pl}}} \delta \chi+\frac{\rho_{2}}{M_{\mathrm{pl}}^{2}} \delta \chi^{2}+\frac{\rho_{3}}{M_{\mathrm{pl}}^{3}} \delta \chi^{3}+\cdots
$$

$f_{\mathrm{NL}}^{\text {local }} \approx 2(A-1) \xi \ll 1$ Small and Positive

PBH formation

Press-Schechter formalism

Scalar Induced Gravitational Wave

Conclusion on the basis of fitting CMB observation \& ending the inflation.......

1. We can enhance the power spectrum by 2 stage inflation dominated by different fields connected by a sharp turn (Iso-curvature).
2. The power spectrum can be easily recognized (or excluded) by observation of it's broken power law shape especially the growing feature of k^{3}.
3. The non-Gaussianity is positive and small.
4. Our model produce a nearly monochromatic PBH mass function.

If you are interested, please see the details in our up coming paper :)

Look a step further

1. Our model probably can lead to an interesting reheating.
2. What happens for the "l"-Stage "J"-field inflation?
: Muti-peak power spectrum? Muti-modal distribution of PBH? Carr and Kuhnel, 2018 (1811.06532)
(2) Will the growing behavior of power spectrum still be limited to k^{3} ?
3. What if there is a USR phase in between of the two stages?

To be continued...

Primordial Black Holes
from R^{2} gravity theory with a non－minimally coupled scalar field

Thanks For Listening！
 ご視聴ありがとう！

感谢聆听！

Xinpeng Wang
Tongji University（Shanghai，China）\＆Kavli IPMU（Chiba，Japan）
XW，Misao Sasaki \＆Ying－li Zhang，in preparation．

CMB fitting

$$
\begin{aligned}
& n_{s}^{R^{2}}\left(k_{\mathrm{CMB}}\right) \simeq 0.947<0.965 \\
& \left(M=2 \times 10^{-5} M_{\mathrm{pl}}, \ln \left(k_{1} / k_{\mathrm{CMB}}\right) \approx 36\right)
\end{aligned}
$$

R^{3} gravity

$$
f(R) \equiv\left(R+\frac{R^{2}}{6 M^{2}}+q \frac{R^{3}}{3 M^{4}}\right)-\frac{1}{M_{\mathrm{pl}}^{2}} \xi R \chi^{2}
$$

R^{3} V.S. R^{2}

$$
\begin{aligned}
& \frac{\mathscr{P}_{\mathscr{R}}^{R^{3}}(k)}{\mathscr{P}_{\mathscr{R}}^{2}(k)} \approx 1+6 p_{M} q+\mathcal{O}\left(q^{2}\right) \\
& n_{s}^{R^{3}}\left(k_{\mathrm{CMB}}\right)-n_{s}^{R^{2}}\left(k_{\mathrm{CMB}}\right) \approx-8 \sqrt{p_{M}} q \\
& p_{M} \equiv 9.7 \times 10^{-7} M_{\mathrm{pl}}^{2} M^{-2}
\end{aligned}
$$

Appendix (2/3)

CMB fitting

$$
\begin{aligned}
& R^{3} \bigvee . S . R^{2} \\
& \frac{\mathscr{P}_{\mathscr{R}}^{R^{3}}(k)}{\mathscr{P}_{\Re}^{R}(k)} \approx 1+6 p_{M} q+\mathcal{O}\left(q^{2}\right) \\
& n_{s}^{R^{3}}\left(k_{\mathrm{CMB}}\right)-n_{s}^{R^{2}}\left(k_{\mathrm{CMB}}\right) \approx-8 \sqrt{p_{M}} q \\
& p_{M} \equiv 9.7 \times 10^{-7} M_{\mathrm{Pl}}^{2} M^{-2}
\end{aligned}
$$

Parameters

Case	1	2	3	4
M / M_{pl}	1.8×10^{-5}	1.59×10^{-5}	2.8×10^{-5}	1.8×10^{-5}
m / M_{pl}	5.4×10^{-6}	4×10^{-6}	4×10^{-6}	5.4×10^{-6}
ξ	$5 / 16$	$4 / 16$	$5 / 16$	$/$
A	2	2.3	1.6	$15 / 32 \xi^{-1}$
B	$0.193 \sqrt{1 /\left(2 \pi^{2}\right)}$	$0.12 \sqrt{1 /\left(2 \pi^{2}\right)}$	$0.1 \sqrt{1 /\left(2 \pi^{2}\right)}$	$0.193 \sqrt{1 /\left(2 \pi^{2}\right)}$
$\delta_{\text {th }}$	0.45	0.45	0.45	$/$

Table 1: The parameters used for numerical calculation

