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Introduction

e Primordial black holes (PBHs) are black holes formed in the early
Universe (Zeldovich & Novikov (1967), Hawking (1971)).

> Fossils of the early Universe
» Dark matter candidate

» Hawking evaporation

» High-energy physics

» GW sources

GRAVITATIONALLY COLLAPSED OBJECTS OF VERY
LOW MASS

Stephen Hawking
(Communicated by M. J. Rees)
(Received 1970 November g)

THE HYPOTHESIS OF CORES RETARDED DURING
EXPANSION AND THE HOT COSMOLOGICAL MODEL
Ya. B. Zel'dovich and 1. D. Novikov It is suggested that there may be a large number of gravitationally collapsed
objects of mass 10-3 g upwards which were formed as a result of fluctuations in
T"*;;L";:u";"; Astronomichoskil Zhurnal, Vol. 43, No. 4, the early Universe. They could carry an electric charge of up to =+ 30 electron
B ioah wrvio yabrarioed March 14, 1966 units. Such objects would produce distinctive tracks in bubble chambers and
could form atoms with orbiting electrons or protons. A mass of 1017 g of such
X objects could have accumulated at the centre of a star like the Sun. If such a
The exlatence of bodies with dimensions less than f = 20M/c* at the carly stages of e star later became a neutron star there would be a steady accretion of matter by
D arae sibemstons St o somoon 1 oebtepaiosly Mgh i oot " a central collapsed object which could eventually swallow up the whole star in

cores retarded during expansion (3, 4] will conflit with observational data. about ten million years.

SUMMARY
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Observational constraints

@ Observational constraints on the abundance of PBHs

» Dark matter mass windows: ~ 1016 — 1023 g for all CDM and
~ 1027 — 1028 g and ~ 1 — 103 M, for a large fraction of CDM

MMy
1075 1070 107 1 10° 1010 10" 1020
T T T
| CMB
Y
/’ 3
/ ]
.’/
n_‘/" E
/” .
/’
/” 3
/"’ .
w/ <
GW2
1 L L L L - L
1020 105 100 103 10*  10® 10% 10%
Mg]

Figure: f(M) = QPBH/QCDM (Carr et al. (2021))
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GW Observations

e Many BBHs of ~ 30M(, discovered by GW observation
» Those BHs may be of cosmological origin. (Sasaki et al. (2016), Bird et
al. (2016), Clesse & Garcia-Bellido (2017)).
» Constraints on the spin parameter Xes of LIGO BBHs (Abbott et al.
(2017))
» Search for PBH population in LIGO-Virgo BBHs (Franciolini et al.
(2022))

@ Evidence or detection of nHz GWs by NANOGrav (Agazie et al. (2023),
...) and other PTAs
» Maybe consistent with the secondary GWs of scalar perturbations that

may have produced PBHs of solar mass or subsolar masses (Kohri &
Terada (2021), Inomata et al. (2023), ...).
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Mass of PBHs

@ PBH mass is approximately equal to the mass enclosed within the
cosmological horizon at the formation.

M ~ Mu(ty) @y~ 1M b R,~1km (2
~ ~ —tp~ — o~ m [ —
=g © \10-5s/)° Mg
@ The mass accretion does not significantly affect the initial mass (Carr
& Hawking (1974) ...).
@ Hawking evaporation (Hawking (1974))

T, fic? 100 MeV < M >_1

= — =~ e —
H 8TGMk 105g )
dM gesrhct G2M3 M \?
= Tt ~10 Gyr [ ——— ) .
dt 153607 G2 M2 Jetthct 1015g

Thus, they have dried up until now for M < 10'° g.
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Abundance of PBHs

e B(M): The fraction of the Universe which goes into PBHs

e f(M): The fraction of PBHs to all of the CDM at the present time

QpBH

f(M) =

QCDMt=tO

@ PBHs are condensed during the radiation-dominated (RD) era
because they behave as nonrelativistic particles, so

B(M) ~ 2x107'8 < )1/2 F(M)

1015 g

for M > 105 g if they are formed in the RD era.
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Constraint on G(M)

e Constraint on B(M) (Carr (1975), Carr et al. (2021))
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Taken from Carr et al. (2021). The dotted lines below 10° g involve less secure

assumptions.
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Formation studies of PBHs

@ Central question: Can we predict 3(M) and other properties of
PBHs for a given cosmological scenario?

@ Possible mechanism

» Conventional: growth of primordial fluctuations generated by inflation
» New physics: collapse of domain walls, bubble nucleation, collision of
bubbles, phase transitions, ...

@ We here focus on the conventional scenario. Key ideas are

Primordial fluctuation generated by inflation
Cosmological long-wavelength solutions
Formation threshold

Critical behaviour

Abundance estimate

vV vy VY VvYYyYy
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Fluctuation generated in inflation

@ The scales of perturbations of super-horizon scale generated in
inflation enter the horizon in the decelerated expansion.
Comoving coordinate length

Hubble length Hubble length

Density fluctuation %rizon entry

Deceleration
(Matter-dominated or
Radiation-dominated)

L

Horizon exit

Acceleration
(Inflation)

log a

e Inflation gives the power spectrum P¢(k) and the statistics of
curvature perturbations ¢ and thereby the standard deviation o (k)
and the statistics of density perturbation d. See Sasaki et al. (2018).

T. Harada (Rikkyo U.) Compaction function PBH IPMU 2023 13 /40



Cosmological longwave-length solutions

o Initial data: long-wavelength solutions obtained by the gradient
expansion in powers of € = k/(aH) < 1 (Shibata & Sasaki (1999),
Polnarev & Musco (2007), Harada, Yoo, Nakama & Koga (2015))

<—La/k —

e

I
—_— | ———

1/H

@ 3 + 1 decomposition of spacetime
ds®> = —a2dt® + e*a®(t)7;; (dx’ + Bidt)(dx? + 37 dt),

where 7;; is chosen so that det(7;;) = det(n;;).
@ The long-wavelength solutions have ¢ = O(1) but § = O(€?).

@ Only a nonliearly large amplitude of perturbation can form a PBH.
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Formation threshold

@ PBH formation needs numerical relativity even in spherical symmetry.

@ Threshold 8¢, ~ 0.45 for RD p = p/3 for the averaged density
perturbation dgy. Alternatively, C ~ 0.4 in terms of the compaction
function C. (Carr (1975), Shibata & Sasaki (1999), Musco et al. (2009), ...)

e EOS dependence (p = wp), implying enhancement for a soft EOS.
The Jeans criterion works. (Musco & Miller (2013), Harada, Yoo & Kobhri
(2013))
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Critical behaviour

@ The overdensity collapses to a BH if dzr > d¢n, while it doesn't if
0 < Otn. There appears critical behaviour with universality,
self-similarity and power-law scaling laws. (Choptuik 1993, ...)

@ PBH critical behaviour (Niemeyer & Jedamzik (1999), Musco & Miller (2013))
There appears mass scaling law.
MBH ~ kMH(5 — éth)7, ¥ = 0.36

0 —
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Abundance estimate

@ Assuming dg obeys a Gaussian distibution, Carr (1975) obtained

6max
B~2 ! / dse—92/20D) ~ |27 —6%,/(20%)
Vano 7 O¢h

Also called Press-Schechter. So, o 2 0.05 or P¢ 2 0.01 is needed
to have a cosmologically interesting amount.

@ This means typically dt1, ~ 8c. Only the tail of the distribution is
responsible. The non-Gaussianity is crucial.
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Inflationary cosmology

Comoving coordinate length

Hubble length Hubble length

Density fluctuation %ﬂzon entry

Deceleration
(Matter-dominated or
Radiation-dominated)

>

Horizon exit

Acceleration
(Inflation)

log a

Figure: The time evolution of the Hubble length and the fluctuation scale

@ LWL solutions as initial conditions

» The fluctuations get stretched to super-horizon in an inflationary era.
» After the inflation, the fluctuations are described by the LWL solutions.
» Once they enter the Hubble horizon, the LWL scheme breaks down.
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Long-wavelength limit

@ A smoothing length is L = a/k, below which it is described by the
FLRW, while the Hubble length is £z := H~1, where H = a/a.

@ Expansion parameter € < 1

2 k 9;In¥
€= L = " with nT O(e¢)
L aH aH

i-—— L=a/k —

i
1/H
@ In the decelerated expansion, the limit € — O realises as t — 0.

@ The term ‘long-wavelength’ is a bit misleading because we don't take
the limit & — 0.
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Long-wavelength (LWL) solutions

o Flat FLRW solution:
ds® = —dt? + a®(t)(dx? + dy?® + dz?)
@ Can we have a spacetime with a metric
ds® =~ —dt® + a®(t)¥*(x,y, z) (dz?® + dy? + d=?)

as t — 07 Yes, we can as a solution of the Einstein equation.

@ In spherical symmetry, we have
ds® ~ —dt® + a®(t)¥*(r)(dr? + r2dQ?)

as t — 0, where d2 := d#? + sin? 0d¢2.
Shibata & Sasaki (1999), Polnarev & Musco (2007)
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Cosmological conformal 3+1 decomposition
@ Metric

ds? = —a?dt® + p*a®(t)7:;(dx® + B'dt) (dx? + BIdt),
where 4 = 1 with 7;; being the flat 3D metric.

@ ¢ := 21In4 is called curvature perturbation in cosmology:
o Flat FLRW: a =1, 8* =0, ¢ = 1 and Yij = Mij

Line element

ﬁAt

ds* =~(adt) +y, (' + par)(ax’ + pia)
Figure: Slicing and threading with ~;; = 1*a®(t)7;;
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Long-wavelength solutions
o Additional assumption
> TH = (p + p)utu” + pgh”
» p=(T'—1)p, whereI' =1+ w
o We write ¢ = \II(X)(I +€), a =1+ x and Yij = Mij + hij.
@ € expansion. The Einstein eqs imply the following:
> Metric: ¥, o, ;5

‘II(X) = 0(60)7 £E= 0(62)7 ﬂl = O(e)a
x = O(€®), hij = O(e?)
» Matter: p, p, u#

§:=P" P _ O(e?), v':= u—t = O(e)
Pb u

» Extrinsic curvature: K;; = A;; + v:; K/3
K=-3H(1+4k), k= 0(62), Aij = ¢_4a_2A1;j = 0(62)

Shibata & Sasaki (1999), Lyth, Malik & Sasaki (2005)
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Gauge issues

@ We require the Einstein eqs and the EOM order by order in power of
€ and solve them to obtain LWL solutions.
Shibata & Sasaki (1999), Harada, Yoo, Nakama & Koga (2015)

o Gauge issues
» Slicing: lapse function «
* Constant-Mean-Curvature slice: kK = 0
* Uniform-Density slice: § = 0
* Comoving slice: u; =0
* Geodesic slice: x =0
» Threading: shift vector 3*
* Comoving thread: v* = 0
* Normal coordinates: 3% = 0
* Conformally Flat coordinates: h;; = 0
» Caveat: The conformal Newtonian gauge is inconsistent with the
ansatz of the LWL solns.
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LWL solns: next-to-leading order

e W(x) generate the LWL solutions. The explicit expressions to O(€2)
are obtained in different gauges (Harada, Yoo, Nakama, Koga (2015)).

@ CMC slice

1 \? 2
5 ~ — R, | :
cmc =~ f <aH> , UCMCj ST(3T + 2)H CMC,j
where _
f= f( ) o 4 AP
— I = Ty gs

with A being the flat Laplacian.

@ Comoving slice

3T 1\2
Ocom < 3F—|—2f o H sy Ucomj = 0.

@ The above do not depend on the threading condition.
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Quasi-local mass in spherical symmetry

@ We focus on spherically symmetric spacetimes.
ds? = gap(x©)dzAde® + R%(xC)d02,

where R is the areal radius and A, B and C run over 0 and 1.

@ Misner-Sharp mass as total energy enclosed within a sphere of ¢

1
M := 5R(1 — DARD“R)

with D 4 being the covariant derivative compatible with gap.
@ The Misner-Sharp mass has an integral form (or Kodama mass):

M = —/ SHds,,
>

where X is a 3-ball bounded by the 2-sphere of 4.
» Kodama current: S# := —T*# K"
> Kodama vector: K* := —eABagR (8/9z4)".
Misner & Sharp (1964), Kodama (1980), Hayward (1996), Yoo (2022)
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Shibata-Sasaki compaction function
@ Shibata and Sasaki (1999) used the conformally flat coordinates

ds? = —a2dt? + ¢Y*a®[(dr + Brdt)? + r2dQ?),

with the CMC slice in spherical symmetry.

@ Gave the expressions of the mass excess and the compaction function

r 2x 0
0Mss := 47ra3p0/ x2dzdcmc - P8 (1 + w¢>
0 P Ox
c (sMss(t, r) . 0 Mgs (t, T)
53 R(t,T) rp2(t,r)a
@ Cgs becomes time-independent in the limit € — 0 or t — 0, so that
dXép 1.
Css(t,r) = Css(r) = f}{ ~ 560MC,H("')7

where SCMC,H is the density perturbation averaged over the horizon patch
at the horizon entry a®?r = H ™! to the next-leading order of O(e).
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Css in terms of ¥

° 6CMC(ta ’I’) and Css(’r)

deme Css
CSS,max
To r \“
(¢} \_/ O  Tmax

(a)

My / ry(r)?a

Figure: (a) demc(t, ), Css(r), (b) Css for the critical cases

e Empirically, the maximum of Cgg(7) (or its volume average) gives a
good indicator for PBH formation. The threshold value is ~ 0.4 for

radiation I' = 4/3.

Shibata & Sasaki (1999), Escriva et al. (2019)

T. Harada (Rikkyo U.)

Compaction function

PBH IPMU 2023

31/40



Css in terms of ¥

@ LWL soln in the CMC slice in spherical symmetry

1 \?2 2
6 ~ — 9 T ~ —6 T
cMC f (aH) uUcMC ST(3T 1 2)H cMC,
4 1 2/
‘Il - ‘I’('I"), .f = f('f') = _§r2‘]:15 (7’ ‘Il )

@ Css in the LWL soln can be rewritten as

1 dln ¥\ 2
csszE 1—<1+2 )

dinr

This does not contain ¥”’.
Harada, Yoo, Nakama & Koga (2015)

T. Harada (Rikkyo U.) Compaction function PBH IPMU 2023 32/40



Outline

© Shibata-Sasaki compaction function revisited

T. Harada (Rikkyo U.) Compaction function



Mass and mass excess

@ Mass in the spatially conformally flat coordinates
M = 47r/ :c2d:na3a1,b6Tt“K”
0
s
= dna® [ da(¥?2)* {~[(p + p)u'us + pl(570)
0
t, Lo 2
o Pyt (Wa), )

@ Mass excess
» The mass excess from the flat FLRW spacetime is naturally defined as
OM(t,r) = M(t,r) — Mrr(t, P2 (t,r)r),
i.e., the difference between masses enclosed by two spheres of the same

areal radius.
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@ Mass excess

dMcwmc

Mass excess in the CMC slice

A
47ra3pb/ dz(¥%z)? [6cvc (PPz)’
0
2
3(3T + 2) Semc

/ dz(922)2 (922) oo
0

+ (v :c)]

4dmwa’
po [31“ T2
2

+MJCMC (t,r) (\Il2(r)r)3} ,

where integration by parts is implemented. This reduces to

CCMC (r) ~

where Comc =

T. Harada (Rikkyo U.)

dMcmc

s
ar +2 >\ 3r+2

Fr)(®2(r)r)?,
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Css and Ccnmc

@ dMcnc is different from d Mg due to the nonvanishing ucmc !
There is no direct relation between Comc and Css.

@ Css does not contain . This is why Cgg is empirically robust.

o If 4(t,r) has a spike like below, Comc(7) has a large maximum of
O(A_l/z) at r1, whereas both Cgg(r) and ¥(r) are kept small.

5

A

Figure: Density spike
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CSS and Ccom

@ In the comoving slice, we have

3T 1 \?2
5001‘11 ~ f s  Ucomj :0,

3I' + 2 aH
3
5Mcom(t, ’l“) ~ 3T + 25Mss(t, T)

@ The legitimate compaction function in the comoving slice is thus
directly related to Css as
O Mcom 3r

Ceom(r) = —5 ~3r 2

Css(r).

@ The threshold value for the maximum of Ceom (7) is therefore
~ 0.27 for T = 4/3.
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Gauge dependence of compaction functions

e C(7)’s in different slices contain ¥’ (r) except for Ccom(T).

e For 7 = rg, where f(r¢) = 0, we find

3T
342

Ccom(r0) = Ccmc(ro) = Ca(ro) = Cun(ro) =~ Css(ro)-

Thus, C(rg)'s are gauge-independent except for Css(7g).
@ However, C(r)'s and their maxima are gauge-dependent.

deme Css

CSS,max

70 r \“

O v O Tmax
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Summary

@ Despite the initial intention, Cgg is not directly related to d M/ R in
the CMC slice but happens to that in the comoving slice up to a
constant factor.

@ Css and Ccom are unique for not containing W”’. This is why they
are very robust to give a threshold for PBH formation.
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Reconstruction to the next-to-leading order

@ The Shibata-Sasaki gauge choice (the CMC slice and the Conformally
Flat coordinates) gives the following LWL solutions:

1 \? 2
i =~ — s "(r)o7
f(aH) » Ui N SrGr o+ araz? %
30 —2 1
X ~ - )
3T’ (aH)?
6 L | 1 1
B~ {‘3r+z/ood’° [w Cos () = 371 (7)
- 1
+,Boo} ﬁ =: IB(T)ﬁ’
¢ 1 { 2 Css 92 — 3 — 4
2(3T — 2) 3I‘—+—2r2\II4 3r(3r+2)

+ (14 225 0} o = 60

where ,5'00 is a constant of integration.
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Mass in terms of the boundary

@ The compaction function is originally given in terms of the spatial
integral but can also be written in terms of the metric functions at
the boundary.

@ Shibata and Sasaki used the conformally flat coordinates
ds? = —a2dt? + ¢Y*a®[(dr + Brdt)? + r2dQ?),
with the CMC slice in spherical symmetry.
@ We use the definition of the Misner-Sharp mass

2M A

where R = 12(t,r)a(t)r. This is an expression in terms of the
boundary.
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Consistency check
@ This expression implies

20 Mcmc
R

~ 1 (1 -+ ZT‘I’/>2
~ U

+ 2 [25' — Hx - (1 + 27::)] (¥*r)*(a®H),

where we have used 2Mpr/R = H?R?.

@ Now that we have the full set of the LWL solution, let us check
consistency about the compaction function.

@ Using the obtained solution for x, 3 and &, we can show

T, !
sT+2 SV T o

CCMC (T) ~

F(r) (T2 (r)r)2.
This coincides with the expression obtained using the spatial integral.
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Calculation 1

@ For the LWL soln, this reduces to
2M
'R

5 s ( 2r\Il’>2
H?R®*+1—(1+

/

+2 {25' —Hx -8 (1 Y >] (¥?r)*(a’H),

where we have used a« = 1 + x and ¢ = ¥(r)(1 + &).
@ 26 M /R is then written as

26 M ( 2r\Il’>2
— =~ 1—-(1+
R o

/

. 2r¥
+2 [2£—Hx—ﬁ<1+

)| @nraem

because

for the corresponding FLRW solns.
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Calculation 2

@ The evolution equations for 1) and h;; in Einstein equations imply

21"1”) 1

2£—Hx—ﬁ(1 o) 38 =0 (1)

"o =y A, (2)

where

5 L ~ii
Aij = g2 (Kij — %K) ,

and we have imposed kK = 0 and h;; = 0.
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Calculation 3

e Using (1), we can eliminate £, x and 3, while Aij is given in the
LWL soln by

i 1, <1+2r\11'>2 L2 , AT 2 1
r—[1-— —r .
27 204 7 3 W5 (30 +2a2H

@ Therefore, eliminating 3’ using (2), we obtain

M _ 3T ) (1+ 2r\If’)2 N F(T%)?
R " 2(3T +2) \Il 3T + 2 "
or
c(r) ~ Cos(r) + — F(r)(?r)?,
3T + 2 3T + 2
where we have used
41 L,
F= 3295 (T \Ill) )
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Alternative choice of the background mass

o We can alternatively choose Mgy (t, ¥2(r)r) rather than
Mg (t,¥2(t, r)r) for the background mass.

@ This implies an alternative mass excess and a compaction function:

AM(t,r) = M(t,r) — Mrr(t, lIlz(’r')'r)a
AM(t,r)

tcmc(t,r) R, )

=~ %CMC(T)-
@ This definition implies

1
%cmc — Css = <3H€ + 3Tﬂ’> (¥?r)%a’H

in the Shibata-Sasaki gauge conditions.

@ In general, Cgg does not coincide with ¥cnmc either.
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