PBH Abundances

- 'Press-Schechter', peaks, excursion set peaks
- Universality?
- Non-linear, non-Gaussian, (Non-spherical)
- Non-delta function in mass, time, shape
- Examples
- Mergers

Ravi K Sheth (UPenn) with C. Germani, A. Escriva

Tuesday, July 17, 2012

But wait... We should be doing this in the MUTIAL fluctuation field! no transfer function)

Persistence of memory

Press-Schechter

We want largest scale on which random walk δ first crosses δ_c .

Assume $s(r) = \langle \delta_r^2 \rangle$, the variance on scale r, decreases monotonically with r (e.g. universe is homogeneous on large scales).

Let $f_1(S)$ denote probability that the density first exceeds δ_c on scale S.

Then $p(>\delta,s) = {}_0 \int_s dS f_1(S) p(>\delta,s|\text{first cross on } S)$

If walks increase monotonically (e.g. if $\delta_R = 2\sqrt{S}$ then $\delta_r = 2\sqrt{s}$), then

 $p(>\delta,s|\text{first cross on } S) = 1$ and so $p(>\delta,s) = {}_0 \int_S dS f_1(S)$.

This is the Press-Schechter expression.

Notice $p(>\delta,s)$ need not be Gaussian, though the assumption that walks are monotonic may be better for some cases than others.

Press-Schechter (contd.)

 $p(>\delta_c,s) = {}_0 \int dS f_1(S) p(>\delta_c,s|$ first cross on S)

If walks monotonic (e.g. if $\delta_R = 2\sqrt{S}$ then $\delta_r = 2\sqrt{s}$),

 $p(>\delta_c,s|$ first cross on S) = 1.

If walks noisy, Markov, then

 $p(>\delta_c,s|$ first cross on S) = 1/2.

(Neither assumption correct in general.)

So $p(>\delta_c,s) = {}_0\int_s dS f_1(S)$ or $p(>\delta_c,s) = {}_0\int_s dS f_1(S)/2.$

This difference is the origin of the 'Press-Schechter factor of 2'.

Of course, assumption that walks can be centered on random positions in space – implicit in direct use of PDF – is incorrect.

Conditions for PBH formation

Find that scale r where compaction C is maximum:

C' = 0 C'' < 0

Require that, on that scale, C is also a local peak: $\nabla C = 0$ $\nabla \nabla C < 0$

And, on that scale, C is above critical:

In principle, $C_{crit}(C', C'', C''', ...)$

Smoothed energy better (in matter domination)

1.00

Universal C_{crit}

Compaction function is C(r) Let R be that scale where C' = dC/dr = 0. Volume average is $\overline{C} = (3/R^3) \int_{\Omega} R dr r^2 C(r)$ Volume average is universal! C = 2/5. Use this to get $C_{crit}(C',C'',...) = C_{crit}(C'')$. (Escriva, Germani, Sheth 2020)

Conditions

Find that scale r where compaction C is maximum:

C' = 0 C'' < 0

Require that, on that scale, C is also a local peak:

$$\Delta C = 0 \quad \Delta \Delta C < 0$$

And, on that scale, C is above critical:

 $C = C_{crit}(C', C'', C''', ...) \sim C_{crit}(C'')$

 C_{crit} from (3/R³) $\int_{0}^{R} dx x^{2} C(x) = 2/5 \sim$ 'universal'

(Escriva, Germani, Sheth 2020)

Variables

 $C(r) = (2/3) [1 - (1 + d\zeta/dlnr)]^2 = g_r (1 - g_r 3/8)$ where $g_r = -(4/3) (d\zeta/dlnr)$ If ζ is Gaussian, then so is g, but C is not ('nonlinear' \rightarrow 'non-Gaussian'). Work with C,C',C'', $\nabla \nabla C \rightarrow g$, rg', r²g'', $\nabla \nabla g$ \rightarrow g, v, w, χ $C' = g' - \frac{3}{4} gg' = g'(1 - g^{3}_{4});$ C'=0 where v=0

Statistics

 $dn_{\bullet}/dlnr = \left\langle \Sigma_{\bullet} \, \delta_{D}(r-r_{\bullet}) \right\rangle = \left\langle \Sigma_{\bullet} \, \delta_{D}(r-r_{p}) \, \delta_{D}(r-r_{m}) \right\rangle$ $= \left\langle |J| \, \delta_{D}(v) \, \delta_{D}(\nabla g) \, \vartheta(w) \, \vartheta(\nabla \nabla g) \, C_{crit} \right\rangle$ So, eventually:

$$n_{\bullet} = \int_{r_{min}}^{r_{max}} \frac{dr}{r} \int_{0}^{\infty} dw \, w \int_{g_{c}(w)}^{\frac{4}{3}} dg \frac{f(\chi/\sigma_{\chi})}{(2\pi r_{*}^{2})^{3/2}} \, p(g,v=0,w)$$

Explicit sum over 'formation' times *r*, profile shapes *w*.

Mass density in PBH

'Weight' each PBH by its mass ...

... and sum over all times *r*, shapes *w*, masses *M*.:

$$\rho_{\bullet} = \int_{r_{min}}^{r_{max}} \frac{dr}{r} \int_{0}^{\infty} dw \, w \int_{g_{c}(w)}^{\frac{4}{3}} dg \frac{f(\chi/\sigma_{\chi})}{\left(2\pi r_{*}^{2}\right)^{3/2}} p(g,v=0,w) \frac{\mathcal{K}}{2H_{r}} \left[\mathcal{C}(g) - \mathcal{C}_{c}(w)\right]^{0.36}$$

Mass spectrum

Only sum over times and shapes:

$$\frac{dn(M_{\bullet})}{dM_{\bullet}} = \int_{r_{\min}}^{r_{\max}} \frac{dr}{r} \int_{0}^{\infty} dw \, w \int_{g_{c}(w)}^{4/3} dg \, \frac{p(g, w, v = 0) f(x)}{(2\pi r_{*}^{2})^{3/2}} \, \delta_{\mathrm{D}} \Big(M_{\bullet} - \mathcal{K} M_{\mathrm{H}} [C(g) - C_{c}(w)]^{0.36} \Big)$$

Delta function generates power-law M_•^{1/0.36} at low masses At higher masses, this slope modified/cutoff

Illustrative examples

Broad $P(k) \sim A(kr_p)^p exp(-kr_p)$ Narrower if p larger.

Joint PDF of variables depends on P(k).E.g., for Gaussian case, only pairwise correlations matter, and these are given by (suitably weighted) integrals over P(k).

PBH mass fraction

Smaller amplitude, longer duration Larger p, narrower Pk, shorter duration of PBH formation Require β =1 constrains A, r_p ~ sets formation times, masses

Power law at low masses from scaling law

Only small masses at early times

Work in progress

Require β =1 constrains A, $r_p \sim$ sets formation times, masses If pushed to small r_p , many small M_• \rightarrow evaporation?

Binary Mergers

- dn(M,t)/dt = Creation Destruction= ½ 0^{∫M} dm n(m,t) n(M-m,t) B(m,M-m|t) - n(M,t) ∫ dm n(m,t) B(m,M|t) If start from equal mass, and if B(m,M|t) = B(m,M) = m+M Then → Press-Schechter and spectrum of cluster sizes,
 - distribution of merger times, known (Sheth 1996)

For BH, geometric cross-section ~ $R^2 \sim M^2$?

