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What is the origin of large density contrast 7

Cosmic Inflation

Quantum
fluctuation
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Inflation

Origin of structure of universe




Inflation can be the origin of large density contrast

- The density contrast § is related to the curvature perturbation R
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Large Curvature perturbation PBH ‘

amplified by some mechanism during inflation
e.g. Ultra Slow Roll (USR)

Garcia-Bellido et al (2017)



* As a candidate for DM, it is important to accurately estimate the
abundance of PBHs.

« We can estimate it by calculating the complementary cumulative
distribution function (CCDF) of curvature perturbation R

FIR.] = f " P[R]dR
R
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where P[R] is the probability &

distribution function (PDF). * .
» Assuming the Gaussian distribution, N |

CCDF is equal to the complementary 0 R

error function. R

Gaussian?



[ Non-Gaussianity } F[RC]ZL P[R|dR
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« CCDF is sensitive to the non-Gaussianity of curvature perturbation

PIR]

0
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e The large and rare fluctuations that cause PBH formation
cannot be precisely assessed by perturbative methods.

‘E . A.A. Starobinsky (1985)
[ 6N formalism } M.Sasaki and E.D.Stewart (1996)




- Using the 8N formalism and Probability conservation,
we can obtain Probability distribution function (PDF) P[R].

6N formalism /

R =6N(p)
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Step Model
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- Requiring that the potential and its first ¢-derivative are
continuous at ¢ = @, ¢, and ¢,, the six constants are thereby
determined.
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(i) 1st SR stage (¢ = ¢,)
(ii) Step stage (¢, < @ < ¢;)
(iii) 2nd SR stage (¢ < @5)

Time evolution
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.Due to the presence of the upward step, there are three distinct
stages of the background evolution.
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Power spectrum in Step model
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 In our study, we calculate PDF at two different scales,
(1) Scale exiting the Hubble horizon just before the step stage
(2) Dip scale

Logqo (Pr/Px.cmB)
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Result of N calculation

- Summing up the contributions to § N from the three stages,
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SN formalism

Probability conservation
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Tail behavior
P|R] «x exp(—2w,,R)
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- The slope of the tail becomes steeper as Ap decreases
(i.e. the step is steeper).




Logqo PIR]

CCDF F[R,.] = f:P[R]dR
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« With the evaluation of the PBH abundance in mind, we
calculate the CCDF of curvature perturbation.
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- The CCDF dramatically changes depending on the value of
w,,, 1T R, — (R) is larger than the cutoff value.
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4. Highly asymmetric
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Local minimum of R (R,,;,,) exists !!
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Logqo PIR]

'Highly asymmetric PDF |
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At the dip scale, the highly
asymmetric PDF is realized
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(R~(R))x10° Gaussian Highly asymmetric PDF 22
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[In the highly asymmetric PDF, the distribution is significantly biased]
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Tail behavior
P[R] « exp(—2w¢,R)
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Summary

« We studied an inflationary model in which the inflaton potential includes a
finite-width upward step between two SR stages.

« Using the 6N formalism, we calculated the PDF of the curvature
perturbation. For R < Reyrors, the PDF follows the Cutotf PDF, while for

R > Reutorr the exponential tail P[R] « exp(—2wg,R) is dominant.

« The CCDF was also calculated, and we find the significant impact on the
PBH abundance of the exponential tail.

« We also show that the PDF becomes highly asymmetric on a particular
scale exiting the horizon before the step, at which the curvature power
spectrum has a dip. This asymmetric PDF may leave an interesting
signature in the large scale structure such as voids.
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A.A. Starobinsky (1985)
M.Sasaki and E.D.Stewart (1996)

ON formalism

« According to the N formalism,

SQ:SN=N((p+5cp,n+6n;<pf,nf)—N(cp,n;gaf,nf) r =22

" dn

Perturbed trajectory Background trajectory

where 8¢ and ém are the initial scalar field perturbation and
velocity perturbation, respectively.

e Using the §N formalism, we can write the curvature perturbation
as a function of §¢.

26



1st S

R stage

 In this stage, the background trajectory is on the SR attractor.

However, the perturbed trajectories are not on the SR attractor.

» The scalar field perturbation 8¢ gives rise not only to SN but
also to 6m;,.

background 5<,0
—} perturbed 5N(1) = _?
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Step stage

“From the energy conservation law,

Tg = —\/w%+6log(
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Step stage
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- |t is important to note that when ém, is comparable to —m,,
SN teP) may diverge to infinity.



’nd SR stage

2 0 1 /6m\°
) =12 (\/1+92 7r11 +92 (ﬂ11> 1)
- The e-folding number 6N induced by 6m, is given by

2 1 2
3 n2 3 gs m g ™

where k = /iﬂ is the ratio of the slope of the potential
V2

before and after the step.
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Rules

- You can choose
starting point

- No friction

- |nitial velocity 0




Who wins the car race”

Rules
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- You can choose
starting point

- No friction

- |nitial velocity 0
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For B > ky/3 andy >0
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R->+4+0 as §p->——

R=0 at dp=

R—> 4+ as 6@ - 4w

A local minimum of R (R,,;,,) exists !!
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