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1. Introduction
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Primordial Black Hole (PBH)
Density contrast
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𝜌 − �̅�
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𝒙

𝛿!

Gravitational collapse

PBH

0

Y.B.Zelʼdovich and I.D.Novikov(1967)
S.Hawking(1971)
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Candidate for
DM, BBH, SMBH …



What is the origin of large density contrast ?

Cosmic Inflation

Inflation

Quantum 
fluctuation

Origin of structure of universe
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Inflation can be the origin of large density contrast 

・The density contrast 𝛿 is related to the curvature perturbation ℛ

𝛿" =
4
9

𝑘
𝑎𝐻

#

ℛ" in the linear perturbation theory

Large Curvature perturbation PBH

amplified by some mechanism during inflation
e.g. Ultra Slow Roll (USR) 

Garcia-Bellido et al (2017)
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• As a candidate for DM, it is important to accurately estimate the 
abundance of PBHs.

• We can estimate it by calculating the complementary cumulative 
distribution function (CCDF) of curvature perturbation ℛ

.𝐹 ℛ! = 0
ℛ!

%
𝑃 ℛ 𝑑ℛ

where 𝑃 ℛ is the probability 
distribution function (PDF). 

• Assuming the Gaussian distribution, 
CCDF is equal to the complementary 
error function.
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Gaussian?
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.𝐹 ℛ! = 0
ℛ!

%
𝑃 ℛ 𝑑ℛ

• CCDF is sensitive to the non-Gaussianity of curvature perturbation

Non-Gaussianity
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Gaussian

Non-Gaussian

• The large and rare fluctuations that cause PBH formation 
cannot be precisely assessed by perturbative methods. 

𝜹𝑵 formalism
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A.A. Starobinsky (1985)
M.Sasaki and E.D.Stewart (1996)
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𝑃 𝛿𝜑 (Gaussian)

・Using the 𝜹𝑵 formalism and Probability conservation,
we can obtain Probability distribution function (PDF) 𝑃 ℛ .

𝑃 ℛ

？

𝛿𝑁 formalism
ℛ = 𝛿𝑁 𝛿𝜑

Probability 
conservation

𝑃 ℛ = 𝑃 𝛿𝜑
𝑑𝛿𝜑
𝑑ℛQuantum fluctuation



2. Step Model
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Step Model

𝑣 𝜑 = $
𝑣!"# 𝜑 𝜑 ≥ 𝜑#
𝑓!$%& 𝜑 (𝜑' < 𝜑 < 𝜑#)
𝑣!"' 𝜑 𝜑 ≤ 𝜑'

𝑓!$%& 𝜑

= +𝐴# + 𝐵# 𝜑 − 𝜑()*
' 𝜑+ ≤ 𝜑 < 𝜑#

𝐴' + 𝐵' 𝜑 − 𝜑(,- ' 𝜑' < 𝜑 < 𝜑+

・Requiring that the potential and its first 𝜑-derivative are 
continuous at 𝜑 = 𝜑! , 𝜑& and 𝜑#, the six constants are thereby 
determined. 
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1st SR stage

2nd SR stage

Relaxation phase

Step stage

φc φ1φ2

φ

v
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Δφ

Time evolution

・Due to the presence of the upward step, there are three distinct 
stages of the background evolution.

(i) 1st SR stage     𝜑 ≥ 𝜑#
(ii) Step stage   (𝜑' < 𝜑 < 𝜑#)
(iii) 2nd SR stage  𝜑 ≤ 𝜑'
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Power spectrum in Step model
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K. Inomata et al. (2022)
Y.-F. Cai et al. (2022)

Dip

𝑘'-growth

Oscillation

Damping
𝜂!"#$ is finite



• In our study, we calculate PDF at two different scales,
(1) Scale exiting the Hubble horizon just before the step stage
(2) Dip scale
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3. PDF and CCDF
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Result of 𝛿𝑁 calculation
・Summing up the contributions to 𝛿𝑁 from the three stages,  

𝛿𝑁(")

𝛿𝑁($) 𝛿𝑁(%&'()

where
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Full PDF

Gaussian

Cutoff

Exp(-2ωs2ℛ )
𝑃 𝛿𝜑 (Gaussian)

Y.-F. Cai et al.
(2023)

𝛿𝑁 formalism

Probability conservation
𝑃 ℛ = 𝑃 𝛿𝜑

𝑑𝛿𝜑
𝑑ℛ

ℛ%&"'(( =
𝑔𝜅
3
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Tail behavior
𝑃[ℛ] ∝ exp(−2𝜔,#ℛ)

・The slope of the tail becomes steeper as Δ𝜑 decreases
(i.e. the step is steeper). 

ℛ+8$9:: =
𝑔𝜅
3



• With the evaluation of the PBH abundance in mind, we 
calculate the CCDF of curvature perturbation.

17

CCDF .𝐹 ℛ! = 0
ℛ!

%
𝑃 ℛ 𝑑ℛ

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

ℛc-〈ℛ〉
Lo
g 1
0
(F

/F
G
)[
ℛ
c]

ωs2 =30

ωs2 =50

ωs2 =100

ωs2 =250

ωs2 =400

ωs2 =1000

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-15

-10

-5

0

ℛ-〈ℛ〉

Lo
g 1
0
P
[ℛ

]

ωs2=30
ωs2=50
ωs2=100
ωs2=250
ωs2=400
ωs2=1000

・The CCDF dramatically changes depending on the value of   
𝝎𝒔𝟐, if 𝓡𝒄 − 𝓡 is larger than the cutoff value. 

ℛ)*&+,,
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4. Highly asymmetric PDF 
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1st term

2nd term

3rd term

For 𝛽 > 𝜅𝛾/3 and 𝛾 > 0

𝛽 ≡ −
1
𝜋

𝛾 ≡
𝜂)𝛽
2

𝑘
𝑘)

*

ℛ → +∞ 𝛿𝜑 → −
𝑔'

2𝛾
as

ℛ = 0 at 𝛿𝜑 = 0

ℛ → +∞ as 𝛿𝜑 → +∞

Local minimum of 𝓡 (𝓡𝒎𝒊𝒏) exists !!
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Highly asymmetric PDF

𝛾 ≡
𝜂)𝛽
2

𝑘
𝑘)

*

At the dip scale, the highly 
asymmetric PDF is realized

=
𝑑ℛ
𝑑𝛿𝜑 CDEF

= 0

Extreme case (𝛾 = 0.3, ℛGHI = 0)

ℛ = =
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22Highly asymmetric PDF(ℛ-〈ℛ〉)×105
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Gaussian

Illustration of the distributions of curvature perturbation based on different PDFs. 
ℛ is randomly assigned to each of 40 × 40 two dimensional lattice points 
according to the Gaussian PDF (left) and the highly asymmetric PDF (right)

In the highly asymmetric PDF, the distribution is significantly biased

Large Scale Structure ?
Void region ?
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Summary
• We studied an inflationary model in which the inflaton potential includes a 

finite-width upward step between two SR stages.

• Using the 𝛿𝑁 formalism, we calculated the PDF of the curvature 
perturbation. For ℛ < ℛ+8$9::, the PDF follows the Cutoff PDF, while for 
ℛ > ℛ+8$9:: the exponential tail 𝑷[𝓡] ∝ 𝒆𝒙𝒑(−𝟐𝝎𝒔𝟐𝓡) is dominant.
• The CCDF was also calculated, and we find the significant impact on the 

PBH abundance of the exponential tail.

• We also show that the PDF becomes highly asymmetric on a particular 
scale exiting the horizon before the step, at which the curvature power 
spectrum has a dip. This asymmetric PDF may leave an interesting 
signature in the large scale structure such as voids. 
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Back up slides
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𝛿𝑁 formalism A.A. Starobinsky (1985)
M.Sasaki and E.D.Stewart (1996)

• According to the 𝛿𝑁 formalism, 

ℛ = 𝛿𝑁 = 𝑁 𝜑 + 𝛿𝜑, 𝜋 + 𝛿𝜋 ; 𝜑3 , 𝜋3 −𝑁 𝜑, 𝜋 ; 𝜑3 , 𝜋3
Perturbed trajectory Background trajectory

where 𝛿𝜑 and 𝛿𝜋 are the initial scalar field perturbation and
velocity perturbation, respectively.

𝜋 =
𝑑𝜑
𝑑𝑛

• Using the 𝛿𝑁 formalism, we can write the curvature perturbation 
as a function of 𝛿𝜑.



• In this stage, the background trajectory is on the SR attractor.
However, the perturbed trajectories are not on the SR attractor.
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1st SR stage

𝜑𝜑𝜑𝜑)

|𝜋)|

|𝜋|

background
perturbed

• The scalar field perturbation 𝛿𝜑 gives rise not only to 𝛿𝑁(&) but 
also to 𝛿𝜋&.

𝛿𝜋& induces  𝛿𝑁(,678) and 𝛿𝑁(#)
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Step stage

𝜑𝜑𝜑𝜑𝜑𝜑

𝜑𝜑

𝜑𝜑

𝜑)𝜑%𝜑+

|𝜋+|

|𝜋)|

background
perturbed

φc φ1φ2

φ

v
(φ

)

Δφ

From the energy conservation law,

where 𝑔 ≡ 9"
9#
< 1
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Step stage

𝜑𝜑

𝜑𝜑

𝜑𝜑

φc φ1φ2

φ

v
(φ

)

Δφ

𝑁(,678) ≃

𝛿𝑁(,678) ≃ 𝑔 ≡
𝜋+
𝜋)

・It is important to note that when 𝛿𝜋# is comparable to −𝜋#,
𝛿𝑁(,678) may diverge to infinity. 
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2nd SR stage

・The e-folding number 𝛿𝑁(#) induced by 𝛿𝜋# is given by

where 𝜅 ≡ :$#
:$"

is the ratio of the slope of the potential 
before and after the step.



Who wins the car race?
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・No friction

Goal

・Initial velocity 0

Closest !!

Acceleration !!

Rules

・You can choose 
starting point!!?

GO!!



Who wins the car race?
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Goal Too slow !!!

Too far !!!
1st place !!!

・No friction
・Initial velocity 0

Rules

・You can choose 
starting point
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2𝛾
as

ℛ = 0 at 𝛿𝜑 = 0

ℛ → +∞ as 𝛿𝜑 → +∞

A local minimum of 𝓡 (𝓡𝒎𝒊𝒏) exists !!
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