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•PBH as DM, or part of DM
•probe for early universe physics
•GWs associated with PBHs
• formation mechanism: during or after inflation
• formation criterion
•…
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what we have discussed

observational evidence!

and



PBH as (part of) DM

• evaporating PBHs: M≲1015g, f_PBH<<1

• tiny PBHs:  

M~1022g, f_PBH =1 ?

• planetary mass: 

M~10-5Mʘ, f_PBH~10-2 ?

• subsolar mass:

M~0.1Mʘ, f_PBH~10-2 ?

• massive PBHs:

M~10Mʘ, f_PBH~10-3 ?

• supermassive PBHs:

M~105Mʘ, f_PBH~10-6 ?
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Carr, Kohri, Sendouda, Yokoyama, 2002.12278



• inflation
spectrum & non-Gaussianity

potential features, multiverse, confinement?

• phase transitions, EOS, Yukawa force
oscillons, PBH formation + GWs?

• matter-antimatter asymmetry from PBH
PBH jets/evaporation: non-equil + C & CP violation 
modified gravity?
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probe for early universe physics



• GWs from PBH formation                                                
strong force collapse, string-induced, bubble collision, 
early MD, …

• GWs from PBH binaries                                              
LVK binaries, subsolar mass binaries, SMBH,…

• scalar-induced GWs                                          
curvature and/or isocurvature, non-Gaussianity?

• GWs from evaporating PBHs                                 
poltergeist GWs, isocurvature, …

• parity violation signatures?
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GWs associated with PBHs



Formation Mechanisms

• enhanced curvature perturbation                         
formation during RD, MD, wD, …

• type I (normal) vs type II (wormhole-like?)                   
small mass PBHs for >O(1) amplitude perturbations?

• trapped during inflation/quantum tunneling               
proving multiverse, need more quantitative studies

• strong force collapse                                    
heating/cooling, fermion stars?

• PBH clustering                                                               
non-Gaussian curvature/isocurvature perturbation, …
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-during or after inflation-
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• Peaks theory                                                                         
inclusion of non-sphericity

• Critical behavior                                                                      
small mass tail wouldn’t reflect reality 

• Compaction Function                                                         
legitimate CCMC vs universal Css
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Formation Criterion

F(!"#, !#) F(!#)

$(&) ∋ !"#, !#

ü why doesn’t the criterion 
contain 2nd derivatives?

ü spherical symmetry 
artifact? 

deviations from simple scenario:

i) critical collapse
Niemeyer & Jedamzik

BH mass depends on size of 
fluctuation it forms from: M = kMH(δ − δc)

γ

Get PBHs with range of masses produced even if they all form at the same time 
i.e. we don’t expect the PBH MF to be a delta-function

log (δ − δc)

log

(
MBH

MH

)

Musco, Miller & Polnarev  


• Press-Schechter formalism                                                     
perhaps not reliable any more…

• Window Function dependence?                                      
observables shouldn’t depend on WF
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Critical behavior
(borrowed from Anne’s slides)

! ≃ 0.36

tiny mass BHs are 
produced just above 
the threshold dc

does this really happen? 



non-sphericity will kill critical behavior
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温故知新 = learning from the past

19
8 6

Ap
J. 

. .
30

4.
 . 

.15
B 

The Astrophysical Journal, 304:15-61,1986 May 1 
C 1986. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM FIELDS 
J. M. Bardeen1 

Physics Department, University of Washington 
J. R. Bond1 

Physics Department, Stanford University 
N. Kaiser1 

Astronomy Department, University of California at Berkeley, and Institute of Astronomy, Cambridge University 
AND 

A. S. SZALAY1 

Astrophysics Group, Fermilab 
Received 1985 July 25 ; accepted 1985 October 9 

ABSTRACT 
Cosmological density fluctuations are often assumed to be Gaussian random fields. The local maxima of 

such fields are obvious sites for the formation of nonlinear structures. The statistical properties of the peaks 
can be used to predict the abundances and clustering properties of objects of various types. In this paper, we 
derive (1) the number density of peaks of various heights vcr0 above the rms <70; (2) the factor by which the 
peak density is enhanced in large-scale overdense regions; (3) the n-point peak-peak correlation function in the 
limit that the peaks are well separated, with special emphasis on the two- and three-point correlations; and (4) 
the density profiles centered on peaks. To illustrate the predictive power of this semianalytic approach, we 
apply our formulae to structure formation in the adiabatic and isocurvature Q = 1 cold dark matter (CDM) 
models. We assume bright galaxies form only at those peaks in the density field (smoothed on a galactic scale) 
that are above some global threshold height v, æ 3 fixed by normalizing to the galaxy number density. We 
find, for example, that the shapes of the peak-peak two- and three-point correlation functions for the adiabatic 
CDM model agree well with observations before any dynamical evolution, just due to the propensity of the 
peaks to be clustered in the initial conditions. Only moderate dynamical evolution is required to bring the 
amplitude of the correlations up to the observed level. The corresponding redshift of galaxy formation zg in 
the isocurvature model is too recent (zg æ 0) for this model to be viable. Even for the adiabatic models zg ä 
3-4 is predicted. We show that the mass-per-peak ratio in clusters, and thus presumably the cluster mass-to- 
light ratio, is substantially lower than in the ambient medium, alleviating the Q problem. We also confirm that 
the smoothed density profiles of collapsing structures of height ~ vt are inherently triaxial. 
Subject headings: early universe — galaxies: clustering — galaxies: formation 

I. INTRODUCTION 
Recent theories of the formation of cosmological structures focus attention on the linear and early nonlinear epochs appropriate 

to the collapse of regions of different length scales. The structure and clustering pattern of the objects forming reflect the initial 
conditions. These are embodied in a probability ensemble for linear density perturbation configurations F(r, t) = [p(r, t) — <p>]/ 
<p>. The fluctuation density F(r, t) thus defines a three-dimensional random field. In this paper we derive some statistical properties 
of the local maxima of such fields, assuming they are Gaussian distributed. Our results can form the core of an analytical framework 
within which to address the problem of structure formation from small-amplitude initial density fluctuations. 

The methods we use here complement the rc-body and hydrodynamical techniques which are commonly applied to this problem. 
In principle, n-body methods allow one to follow the nonlinear evolution of any random density field by evolving enough 
realizations from the probability ensemble so that a combination of averaging over spatial volumes and over ensemble members 
converges. In practice, limitations arise from discreteness and from present computing capabilities: calculations can cover only 
limited spatial and temporal dynamic ranges; and the number of realizations from the ensemble that can be evolved is relatively 
small (see Efstathiou ei a/. 1984 for a recent discussion). For example, the development of rare condensations such as rich clusters 
are rather difficult to examine by n-body techniques (Barnes et al 1984). The analytic methods described here are already ensemble 
averaged and allow one to investigate easily the gross features of a broad class of initial conditions; they are particularly suited for 
the study of rare events (see Kaiser 1984 for an application to rich clusters). At present, cosmological hydrodynamical studies 
require localized precollapse structures for their initial conditions. Probabilities of various initial shapes can best be obtained by the 
statistical methods of the sort we develop here. 

In our approach to the problem of nonlinear evolution of structure, we focus on the local maxima of the initial density 
perturbations. We assume that condensations of matter form around sufficiently high local density peaks. In order that the density 
field possess a well-defined set of local maxima it must be smooth and differentiable; its harmonic content must be limited at high 
wavenumbers. It is often assumed that at very early times the spectrum of fluctuations had a power-law form over a wide range of 

1 Institute of Theoretical Physics, University of California at Santa Barbara. 
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correlation at r = r0, the model with h = 0.4, Rs = 0.445 h~l Mpc, and q = A. This has (see Fig. 5b) Çpb(r0, 0) æ 0.31, and 
¿pb(ro, t0) = 1 gives ip(r0, i0) ~ 0-20. The corresponding a0s ä 0.9, which together with the threshold at vt = 1.87 implies a threshold 
collapse redshift zt æ 0.0. The typical peak counted as a “galaxy” has <v> » 2.1, so zg & 0.1. Even in this extreme model, which 
would have relatively little biasing in the galaxy/mass ratio, “ galaxies ” would form unacceptably late with a significant fraction not 
collapsed at present. Without any biasing at all, the collapse of a typical peak with v æ 1 is at a redshift z æ 0.2 [with the 
normalization ip(r0, i0) = 1]. 

For scales r > r0, equation (6.63) implies that the peak correlation function is amplified over the mass density correlation 
function, £pk(r, t) æ b2Çp(r, t), by the square of the spatially uniform biasing factor b(t) = <v>/<70s(i) + 1. A common way to normal- 
ize the overall amplitude of the linear perturbation spectrum is to relate the quantity J3(r) = jo Ç(r)r2dr on scales r r0 to that 
determined from galaxy redshift surveys, J3g. The assumption that galaxies are unbiased tracers of the mass distribution corre- 
sponds to J3p = J3g on sufficiently large scales, where J3p is determined using the mass autocorrelation function. Since the dominant 
contribution to J3g(r) comes from scales >r0, with biasing J3P(r) = b~2J3g(r) is a good approximation. The power spectrum 
normalization with biasing is simply lowered by the factor b~2 over that determined assuming “light traces mass.” Predictions of 
the microwave background anisotropies AT/T are lowered by fr“1 over the values obtained using the “light traces mass” 
assumption (e.g., Bond and Efstathiou 1984). For the adiabatic CDM model with h = 0.5, Rs = 0.356 /i-1 Mpc, and q = $,b = 1.7. 
For the isocurvature CDM model with h = 0.4, Rs = 0.445 /i_1 Mpc, and q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on scales r > r0 even if it fails on 
much smaller scales. However, the differences between J3 normalization and the normalization at r0 that we have adopted here for 
simplicity are not too large since the correlation functions we predict, especially in the adiabatic model, are quite similar to the 
observed galaxy correlation function. 

VII. DENSITY PROFILES AROUND PEAKS 
If prominent cosmic structures do indeed arise from condensations of gas and dark matter around primordial density peaks, then 

the initial conditions for nonlinear collapse will be the density and velocity profiles in the neighborhood of the peak as determined in 
the linear regime. Here we focus on the density only. Similar methods would be used to determine the velocity. In § Vila, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor expansion of the density profile. 
In § Yllb, we calculate the average shape and its dispersion as we go farther away from the maximum. In § Vile, we apply our 
results to clusters in neutrino-dominated universes. 

a) The Triaxial Ellipsoid Approximation 
In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - X À,rf/2 . (7.1) 
The axes are oriented along the principal axes. Since all are positive, the contour surface of constant density/, defined by F(r) = /, 
defines a triaxial ellipsoidal surface with semiaxes 

at = ~2(F(0) -n\112 

_ ^ J 
(7.2) 

at least provided F(0) — /is small. Since is by definition the largest eigenvalue, collapse will first occur along the 1-axis, resulting 
in pancake formation as described by Zeldovich (1970). Depending upon the distribution of the other 2f, collapse may or may not 
follow quickly along the other two axes. 

We characterize the asymmetry by the parameters 

e = 
21^ ’ 

2i — 222 + 23 
P~ 2L2,. 

(7.3) 

Thus, e (>0) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degree of oblateness (0 < p < e) 
or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids have p = e, and prolate spheroids have p = — e. As we shall 
see, spheroidal distributions are highly improbable. 

In terms of the asymmetry parameters and the variable x = — V2F/<j2 introduced in § VI, the small r expansion of the profile is 

F(r) ^ vo0 - xo2 — [1 + A(e, p)J as r- 0, 

A(e, p) = 3e[l — sin2 0(1 + sin2 </>)] + p(l — 3 sin2 9 cos2 </>) . (7.4) 
We have adopted spherical coordinates with the 1-axis chosen as the azimuthal one and x3 = r sin 9 sin </>. Note that the angle 
average of the asymmetry measure A(e, p) vanishes. The distribution of shapes in the immediate neighborhood of a peak of given 
height v can be expressed in terms of the distributions for x, e, and p. 

The conditional probability for x, given that the peak has a height v, is independent of the asymmetry parameters e and p: 

p [ \ \j _ >~pk(v> x)dx _ g(x, 7, x*)dx _ exp [-(x - xj2/2(l - y2)] f(x)dx 
*U|Vj ^pk(v) G(y, X*) l2n(l-y2)V12 G(y,yv)- ' ^ 
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correlation at r = r0, the model with h = 0.4, Rs = 0.445 h~l Mpc, and q = A. This has (see Fig. 5b) Çpb(r0, 0) æ 0.31, and 
¿pb(ro, t0) = 1 gives ip(r0, i0) ~ 0-20. The corresponding a0s ä 0.9, which together with the threshold at vt = 1.87 implies a threshold 
collapse redshift zt æ 0.0. The typical peak counted as a “galaxy” has <v> » 2.1, so zg & 0.1. Even in this extreme model, which 
would have relatively little biasing in the galaxy/mass ratio, “ galaxies ” would form unacceptably late with a significant fraction not 
collapsed at present. Without any biasing at all, the collapse of a typical peak with v æ 1 is at a redshift z æ 0.2 [with the 
normalization ip(r0, i0) = 1]. 

For scales r > r0, equation (6.63) implies that the peak correlation function is amplified over the mass density correlation 
function, £pk(r, t) æ b2Çp(r, t), by the square of the spatially uniform biasing factor b(t) = <v>/<70s(i) + 1. A common way to normal- 
ize the overall amplitude of the linear perturbation spectrum is to relate the quantity J3(r) = jo Ç(r)r2dr on scales r r0 to that 
determined from galaxy redshift surveys, J3g. The assumption that galaxies are unbiased tracers of the mass distribution corre- 
sponds to J3p = J3g on sufficiently large scales, where J3p is determined using the mass autocorrelation function. Since the dominant 
contribution to J3g(r) comes from scales >r0, with biasing J3P(r) = b~2J3g(r) is a good approximation. The power spectrum 
normalization with biasing is simply lowered by the factor b~2 over that determined assuming “light traces mass.” Predictions of 
the microwave background anisotropies AT/T are lowered by fr“1 over the values obtained using the “light traces mass” 
assumption (e.g., Bond and Efstathiou 1984). For the adiabatic CDM model with h = 0.5, Rs = 0.356 /i-1 Mpc, and q = $,b = 1.7. 
For the isocurvature CDM model with h = 0.4, Rs = 0.445 /i_1 Mpc, and q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on scales r > r0 even if it fails on 
much smaller scales. However, the differences between J3 normalization and the normalization at r0 that we have adopted here for 
simplicity are not too large since the correlation functions we predict, especially in the adiabatic model, are quite similar to the 
observed galaxy correlation function. 

VII. DENSITY PROFILES AROUND PEAKS 
If prominent cosmic structures do indeed arise from condensations of gas and dark matter around primordial density peaks, then 

the initial conditions for nonlinear collapse will be the density and velocity profiles in the neighborhood of the peak as determined in 
the linear regime. Here we focus on the density only. Similar methods would be used to determine the velocity. In § Vila, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor expansion of the density profile. 
In § Yllb, we calculate the average shape and its dispersion as we go farther away from the maximum. In § Vile, we apply our 
results to clusters in neutrino-dominated universes. 

a) The Triaxial Ellipsoid Approximation 
In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - X À,rf/2 . (7.1) 
The axes are oriented along the principal axes. Since all are positive, the contour surface of constant density/, defined by F(r) = /, 
defines a triaxial ellipsoidal surface with semiaxes 

at = ~2(F(0) -n\112 

_ ^ J 
(7.2) 

at least provided F(0) — /is small. Since is by definition the largest eigenvalue, collapse will first occur along the 1-axis, resulting 
in pancake formation as described by Zeldovich (1970). Depending upon the distribution of the other 2f, collapse may or may not 
follow quickly along the other two axes. 

We characterize the asymmetry by the parameters 

e = 
21^ ’ 

2i — 222 + 23 
P~ 2L2,. 

(7.3) 

Thus, e (>0) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degree of oblateness (0 < p < e) 
or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids have p = e, and prolate spheroids have p = — e. As we shall 
see, spheroidal distributions are highly improbable. 

In terms of the asymmetry parameters and the variable x = — V2F/<j2 introduced in § VI, the small r expansion of the profile is 

F(r) ^ vo0 - xo2 — [1 + A(e, p)J as r- 0, 

A(e, p) = 3e[l — sin2 0(1 + sin2 </>)] + p(l — 3 sin2 9 cos2 </>) . (7.4) 
We have adopted spherical coordinates with the 1-axis chosen as the azimuthal one and x3 = r sin 9 sin </>. Note that the angle 
average of the asymmetry measure A(e, p) vanishes. The distribution of shapes in the immediate neighborhood of a peak of given 
height v can be expressed in terms of the distributions for x, e, and p. 

The conditional probability for x, given that the peak has a height v, is independent of the asymmetry parameters e and p: 

p [ \ \j _ >~pk(v> x)dx _ g(x, 7, x*)dx _ exp [-(x - xj2/2(l - y2)] f(x)dx 
*U|Vj ^pk(v) G(y, X*) l2n(l-y2)V12 G(y,yv)- ' ^ 
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correlation at r = r0, the model with h = 0.4, Rs = 0.445 h~l Mpc, and q = A. This has (see Fig. 5b) Çpb(r0, 0) æ 0.31, and 
¿pb(ro, t0) = 1 gives ip(r0, i0) ~ 0-20. The corresponding a0s ä 0.9, which together with the threshold at vt = 1.87 implies a threshold 
collapse redshift zt æ 0.0. The typical peak counted as a “galaxy” has <v> » 2.1, so zg & 0.1. Even in this extreme model, which 
would have relatively little biasing in the galaxy/mass ratio, “ galaxies ” would form unacceptably late with a significant fraction not 
collapsed at present. Without any biasing at all, the collapse of a typical peak with v æ 1 is at a redshift z æ 0.2 [with the 
normalization ip(r0, i0) = 1]. 

For scales r > r0, equation (6.63) implies that the peak correlation function is amplified over the mass density correlation 
function, £pk(r, t) æ b2Çp(r, t), by the square of the spatially uniform biasing factor b(t) = <v>/<70s(i) + 1. A common way to normal- 
ize the overall amplitude of the linear perturbation spectrum is to relate the quantity J3(r) = jo Ç(r)r2dr on scales r r0 to that 
determined from galaxy redshift surveys, J3g. The assumption that galaxies are unbiased tracers of the mass distribution corre- 
sponds to J3p = J3g on sufficiently large scales, where J3p is determined using the mass autocorrelation function. Since the dominant 
contribution to J3g(r) comes from scales >r0, with biasing J3P(r) = b~2J3g(r) is a good approximation. The power spectrum 
normalization with biasing is simply lowered by the factor b~2 over that determined assuming “light traces mass.” Predictions of 
the microwave background anisotropies AT/T are lowered by fr“1 over the values obtained using the “light traces mass” 
assumption (e.g., Bond and Efstathiou 1984). For the adiabatic CDM model with h = 0.5, Rs = 0.356 /i-1 Mpc, and q = $,b = 1.7. 
For the isocurvature CDM model with h = 0.4, Rs = 0.445 /i_1 Mpc, and q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on scales r > r0 even if it fails on 
much smaller scales. However, the differences between J3 normalization and the normalization at r0 that we have adopted here for 
simplicity are not too large since the correlation functions we predict, especially in the adiabatic model, are quite similar to the 
observed galaxy correlation function. 

VII. DENSITY PROFILES AROUND PEAKS 
If prominent cosmic structures do indeed arise from condensations of gas and dark matter around primordial density peaks, then 

the initial conditions for nonlinear collapse will be the density and velocity profiles in the neighborhood of the peak as determined in 
the linear regime. Here we focus on the density only. Similar methods would be used to determine the velocity. In § Vila, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor expansion of the density profile. 
In § Yllb, we calculate the average shape and its dispersion as we go farther away from the maximum. In § Vile, we apply our 
results to clusters in neutrino-dominated universes. 

a) The Triaxial Ellipsoid Approximation 
In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - X À,rf/2 . (7.1) 
The axes are oriented along the principal axes. Since all are positive, the contour surface of constant density/, defined by F(r) = /, 
defines a triaxial ellipsoidal surface with semiaxes 

at = ~2(F(0) -n\112 

_ ^ J 
(7.2) 

at least provided F(0) — /is small. Since is by definition the largest eigenvalue, collapse will first occur along the 1-axis, resulting 
in pancake formation as described by Zeldovich (1970). Depending upon the distribution of the other 2f, collapse may or may not 
follow quickly along the other two axes. 

We characterize the asymmetry by the parameters 

e = 
21^ ’ 

2i — 222 + 23 
P~ 2L2,. 

(7.3) 

Thus, e (>0) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degree of oblateness (0 < p < e) 
or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids have p = e, and prolate spheroids have p = — e. As we shall 
see, spheroidal distributions are highly improbable. 

In terms of the asymmetry parameters and the variable x = — V2F/<j2 introduced in § VI, the small r expansion of the profile is 

F(r) ^ vo0 - xo2 — [1 + A(e, p)J as r- 0, 

A(e, p) = 3e[l — sin2 0(1 + sin2 </>)] + p(l — 3 sin2 9 cos2 </>) . (7.4) 
We have adopted spherical coordinates with the 1-axis chosen as the azimuthal one and x3 = r sin 9 sin </>. Note that the angle 
average of the asymmetry measure A(e, p) vanishes. The distribution of shapes in the immediate neighborhood of a peak of given 
height v can be expressed in terms of the distributions for x, e, and p. 

The conditional probability for x, given that the peak has a height v, is independent of the asymmetry parameters e and p: 

p [ \ \j _ >~pk(v> x)dx _ g(x, 7, x*)dx _ exp [-(x - xj2/2(l - y2)] f(x)dx 
*U|Vj ^pk(v) G(y, X*) l2n(l-y2)V12 G(y,yv)- ' ^ 
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correlation at r = r0, the model with h = 0.4, Rs = 0.445 h~l Mpc, and q = A. This has (see Fig. 5b) Çpb(r0, 0) æ 0.31, and 
¿pb(ro, t0) = 1 gives ip(r0, i0) ~ 0-20. The corresponding a0s ä 0.9, which together with the threshold at vt = 1.87 implies a threshold 
collapse redshift zt æ 0.0. The typical peak counted as a “galaxy” has <v> » 2.1, so zg & 0.1. Even in this extreme model, which 
would have relatively little biasing in the galaxy/mass ratio, “ galaxies ” would form unacceptably late with a significant fraction not 
collapsed at present. Without any biasing at all, the collapse of a typical peak with v æ 1 is at a redshift z æ 0.2 [with the 
normalization ip(r0, i0) = 1]. 

For scales r > r0, equation (6.63) implies that the peak correlation function is amplified over the mass density correlation 
function, £pk(r, t) æ b2Çp(r, t), by the square of the spatially uniform biasing factor b(t) = <v>/<70s(i) + 1. A common way to normal- 
ize the overall amplitude of the linear perturbation spectrum is to relate the quantity J3(r) = jo Ç(r)r2dr on scales r r0 to that 
determined from galaxy redshift surveys, J3g. The assumption that galaxies are unbiased tracers of the mass distribution corre- 
sponds to J3p = J3g on sufficiently large scales, where J3p is determined using the mass autocorrelation function. Since the dominant 
contribution to J3g(r) comes from scales >r0, with biasing J3P(r) = b~2J3g(r) is a good approximation. The power spectrum 
normalization with biasing is simply lowered by the factor b~2 over that determined assuming “light traces mass.” Predictions of 
the microwave background anisotropies AT/T are lowered by fr“1 over the values obtained using the “light traces mass” 
assumption (e.g., Bond and Efstathiou 1984). For the adiabatic CDM model with h = 0.5, Rs = 0.356 /i-1 Mpc, and q = $,b = 1.7. 
For the isocurvature CDM model with h = 0.4, Rs = 0.445 /i_1 Mpc, and q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on scales r > r0 even if it fails on 
much smaller scales. However, the differences between J3 normalization and the normalization at r0 that we have adopted here for 
simplicity are not too large since the correlation functions we predict, especially in the adiabatic model, are quite similar to the 
observed galaxy correlation function. 

VII. DENSITY PROFILES AROUND PEAKS 
If prominent cosmic structures do indeed arise from condensations of gas and dark matter around primordial density peaks, then 

the initial conditions for nonlinear collapse will be the density and velocity profiles in the neighborhood of the peak as determined in 
the linear regime. Here we focus on the density only. Similar methods would be used to determine the velocity. In § Vila, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor expansion of the density profile. 
In § Yllb, we calculate the average shape and its dispersion as we go farther away from the maximum. In § Vile, we apply our 
results to clusters in neutrino-dominated universes. 

a) The Triaxial Ellipsoid Approximation 
In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - X À,rf/2 . (7.1) 
The axes are oriented along the principal axes. Since all are positive, the contour surface of constant density/, defined by F(r) = /, 
defines a triaxial ellipsoidal surface with semiaxes 

at = ~2(F(0) -n\112 

_ ^ J 
(7.2) 

at least provided F(0) — /is small. Since is by definition the largest eigenvalue, collapse will first occur along the 1-axis, resulting 
in pancake formation as described by Zeldovich (1970). Depending upon the distribution of the other 2f, collapse may or may not 
follow quickly along the other two axes. 

We characterize the asymmetry by the parameters 

e = 
21^ ’ 

2i — 222 + 23 
P~ 2L2,. 

(7.3) 

Thus, e (>0) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degree of oblateness (0 < p < e) 
or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids have p = e, and prolate spheroids have p = — e. As we shall 
see, spheroidal distributions are highly improbable. 

In terms of the asymmetry parameters and the variable x = — V2F/<j2 introduced in § VI, the small r expansion of the profile is 

F(r) ^ vo0 - xo2 — [1 + A(e, p)J as r- 0, 

A(e, p) = 3e[l — sin2 0(1 + sin2 </>)] + p(l — 3 sin2 9 cos2 </>) . (7.4) 
We have adopted spherical coordinates with the 1-axis chosen as the azimuthal one and x3 = r sin 9 sin </>. Note that the angle 
average of the asymmetry measure A(e, p) vanishes. The distribution of shapes in the immediate neighborhood of a peak of given 
height v can be expressed in terms of the distributions for x, e, and p. 

The conditional probability for x, given that the peak has a height v, is independent of the asymmetry parameters e and p: 

p [ \ \j _ >~pk(v> x)dx _ g(x, 7, x*)dx _ exp [-(x - xj2/2(l - y2)] f(x)dx 
*U|Vj ^pk(v) G(y, X*) l2n(l-y2)V12 G(y,yv)- ' ^ 
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correlation at r = r0, the model with h = 0.4, Rs = 0.445 h~l Mpc, and q = A. This has (see Fig. 5b) Çpb(r0, 0) æ 0.31, and 
¿pb(ro, t0) = 1 gives ip(r0, i0) ~ 0-20. The corresponding a0s ä 0.9, which together with the threshold at vt = 1.87 implies a threshold 
collapse redshift zt æ 0.0. The typical peak counted as a “galaxy” has <v> » 2.1, so zg & 0.1. Even in this extreme model, which 
would have relatively little biasing in the galaxy/mass ratio, “ galaxies ” would form unacceptably late with a significant fraction not 
collapsed at present. Without any biasing at all, the collapse of a typical peak with v æ 1 is at a redshift z æ 0.2 [with the 
normalization ip(r0, i0) = 1]. 

For scales r > r0, equation (6.63) implies that the peak correlation function is amplified over the mass density correlation 
function, £pk(r, t) æ b2Çp(r, t), by the square of the spatially uniform biasing factor b(t) = <v>/<70s(i) + 1. A common way to normal- 
ize the overall amplitude of the linear perturbation spectrum is to relate the quantity J3(r) = jo Ç(r)r2dr on scales r r0 to that 
determined from galaxy redshift surveys, J3g. The assumption that galaxies are unbiased tracers of the mass distribution corre- 
sponds to J3p = J3g on sufficiently large scales, where J3p is determined using the mass autocorrelation function. Since the dominant 
contribution to J3g(r) comes from scales >r0, with biasing J3P(r) = b~2J3g(r) is a good approximation. The power spectrum 
normalization with biasing is simply lowered by the factor b~2 over that determined assuming “light traces mass.” Predictions of 
the microwave background anisotropies AT/T are lowered by fr“1 over the values obtained using the “light traces mass” 
assumption (e.g., Bond and Efstathiou 1984). For the adiabatic CDM model with h = 0.5, Rs = 0.356 /i-1 Mpc, and q = $,b = 1.7. 
For the isocurvature CDM model with h = 0.4, Rs = 0.445 /i_1 Mpc, and q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on scales r > r0 even if it fails on 
much smaller scales. However, the differences between J3 normalization and the normalization at r0 that we have adopted here for 
simplicity are not too large since the correlation functions we predict, especially in the adiabatic model, are quite similar to the 
observed galaxy correlation function. 

VII. DENSITY PROFILES AROUND PEAKS 
If prominent cosmic structures do indeed arise from condensations of gas and dark matter around primordial density peaks, then 

the initial conditions for nonlinear collapse will be the density and velocity profiles in the neighborhood of the peak as determined in 
the linear regime. Here we focus on the density only. Similar methods would be used to determine the velocity. In § Vila, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor expansion of the density profile. 
In § Yllb, we calculate the average shape and its dispersion as we go farther away from the maximum. In § Vile, we apply our 
results to clusters in neutrino-dominated universes. 

a) The Triaxial Ellipsoid Approximation 
In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - X À,rf/2 . (7.1) 
The axes are oriented along the principal axes. Since all are positive, the contour surface of constant density/, defined by F(r) = /, 
defines a triaxial ellipsoidal surface with semiaxes 

at = ~2(F(0) -n\112 

_ ^ J 
(7.2) 

at least provided F(0) — /is small. Since is by definition the largest eigenvalue, collapse will first occur along the 1-axis, resulting 
in pancake formation as described by Zeldovich (1970). Depending upon the distribution of the other 2f, collapse may or may not 
follow quickly along the other two axes. 

We characterize the asymmetry by the parameters 

e = 
21^ ’ 

2i — 222 + 23 
P~ 2L2,. 

(7.3) 

Thus, e (>0) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degree of oblateness (0 < p < e) 
or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids have p = e, and prolate spheroids have p = — e. As we shall 
see, spheroidal distributions are highly improbable. 

In terms of the asymmetry parameters and the variable x = — V2F/<j2 introduced in § VI, the small r expansion of the profile is 

F(r) ^ vo0 - xo2 — [1 + A(e, p)J as r- 0, 

A(e, p) = 3e[l — sin2 0(1 + sin2 </>)] + p(l — 3 sin2 9 cos2 </>) . (7.4) 
We have adopted spherical coordinates with the 1-axis chosen as the azimuthal one and x3 = r sin 9 sin </>. Note that the angle 
average of the asymmetry measure A(e, p) vanishes. The distribution of shapes in the immediate neighborhood of a peak of given 
height v can be expressed in terms of the distributions for x, e, and p. 

The conditional probability for x, given that the peak has a height v, is independent of the asymmetry parameters e and p: 

p [ \ \j _ >~pk(v> x)dx _ g(x, 7, x*)dx _ exp [-(x - xj2/2(l - y2)] f(x)dx 
*U|Vj ^pk(v) G(y, X*) l2n(l-y2)V12 G(y,yv)- ' ^ 
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FIG. 6—The constrained probability P(x \ v) of eq. (7.5) giving the distribution of x = -V2F/a2 for peaks. (The x used here is 1.58 times that in the text.) 

Here g and G are defined by equations (6.9) and (4.3), and/(x) is given by equation (A15); it is monotonie, ~x8 for small x and ~x3 

for large x. This probability distribution function (7.5) is plotted in Figure 6 for a specific value of y appropriate to galactic scale 
peaks in the adiabatic CDM picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at xm, 
fitted by equation (6.17). 

i) The Distribution of Ellipticity and Prolateness 
Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we need the conditional probability 

for the asymmetry parameters e and p subject to the constraint that the peak has a given height v and x. This turns out to be 
independent of v : 

3255/2 V8 

Pep(e,p\v,x)dedp=Pep(e,p\x)dedp = -^-ÿ^j^e~(5l2)x2(3e2 + p2)W(e,p)dedp. (7.6) 

This result and details of the subsequent discussion are given in Appendix C. The function W(e, p) is a polynomial of order 5 in both 
e and p which is constrained to vanish outside of the | p | < e, e >0 domain. Indeed, the allowed domain is the interior of a triangle 
bounded by the points in the (e, p)-plane: (0, 0), (¿, —£), and (^, ^). See Appendix C for details of the form of W. We plot various 
contour lines of the probability distribution (7.6) in Figure 7 for a variety of yv. We have taken x = x* as the constraint which, 
according to equations (6.13) and (6.19), is the mean value and most probable value for large yv. 

Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely 
triaxially asymmetric, since ~ (^i + Indeed, in the large x limit, e and p are small, and we can approximate P by a 
Gaussian : 

Pep(e, P) * Pep(em, Pm) ^Xp 
(e - o2 

2(72 
where the most probable values and their dispersions are (for large x) 

(P - Pnf 
2*1 r 

 1 
em - x/SxCl + 6/(5x2)]1/2 ’ 

6 
’m “ 5x4[l + 6/(5x2)]2 ’ 

(7.7) 
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FIG. 6—The constrained probability P(x \ v) of eq. (7.5) giving the distribution of x = -V2F/a2 for peaks. (The x used here is 1.58 times that in the text.) 

Here g and G are defined by equations (6.9) and (4.3), and/(x) is given by equation (A15); it is monotonie, ~x8 for small x and ~x3 

for large x. This probability distribution function (7.5) is plotted in Figure 6 for a specific value of y appropriate to galactic scale 
peaks in the adiabatic CDM picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at xm, 
fitted by equation (6.17). 

i) The Distribution of Ellipticity and Prolateness 
Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we need the conditional probability 

for the asymmetry parameters e and p subject to the constraint that the peak has a given height v and x. This turns out to be 
independent of v : 

3255/2 V8 

Pep(e,p\v,x)dedp=Pep(e,p\x)dedp = -^-ÿ^j^e~(5l2)x2(3e2 + p2)W(e,p)dedp. (7.6) 

This result and details of the subsequent discussion are given in Appendix C. The function W(e, p) is a polynomial of order 5 in both 
e and p which is constrained to vanish outside of the | p | < e, e >0 domain. Indeed, the allowed domain is the interior of a triangle 
bounded by the points in the (e, p)-plane: (0, 0), (¿, —£), and (^, ^). See Appendix C for details of the form of W. We plot various 
contour lines of the probability distribution (7.6) in Figure 7 for a variety of yv. We have taken x = x* as the constraint which, 
according to equations (6.13) and (6.19), is the mean value and most probable value for large yv. 

Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely 
triaxially asymmetric, since ~ (^i + Indeed, in the large x limit, e and p are small, and we can approximate P by a 
Gaussian : 

Pep(e, P) * Pep(em, Pm) ^Xp 
(e - o2 

2(72 
where the most probable values and their dispersions are (for large x) 

(P - Pnf 
2*1 r 

 1 
em - x/SxCl + 6/(5x2)]1/2 ’ 

6 
’m “ 5x4[l + 6/(5x2)]2 ’ 

(7.7) 
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FIG. 6—The constrained probability P(x \ v) of eq. (7.5) giving the distribution of x = -V2F/a2 for peaks. (The x used here is 1.58 times that in the text.) 

Here g and G are defined by equations (6.9) and (4.3), and/(x) is given by equation (A15); it is monotonie, ~x8 for small x and ~x3 

for large x. This probability distribution function (7.5) is plotted in Figure 6 for a specific value of y appropriate to galactic scale 
peaks in the adiabatic CDM picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at xm, 
fitted by equation (6.17). 

i) The Distribution of Ellipticity and Prolateness 
Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we need the conditional probability 

for the asymmetry parameters e and p subject to the constraint that the peak has a given height v and x. This turns out to be 
independent of v : 

3255/2 V8 

Pep(e,p\v,x)dedp=Pep(e,p\x)dedp = -^-ÿ^j^e~(5l2)x2(3e2 + p2)W(e,p)dedp. (7.6) 

This result and details of the subsequent discussion are given in Appendix C. The function W(e, p) is a polynomial of order 5 in both 
e and p which is constrained to vanish outside of the | p | < e, e >0 domain. Indeed, the allowed domain is the interior of a triangle 
bounded by the points in the (e, p)-plane: (0, 0), (¿, —£), and (^, ^). See Appendix C for details of the form of W. We plot various 
contour lines of the probability distribution (7.6) in Figure 7 for a variety of yv. We have taken x = x* as the constraint which, 
according to equations (6.13) and (6.19), is the mean value and most probable value for large yv. 

Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely 
triaxially asymmetric, since ~ (^i + Indeed, in the large x limit, e and p are small, and we can approximate P by a 
Gaussian : 

Pep(e, P) * Pep(em, Pm) ^Xp 
(e - o2 

2(72 
where the most probable values and their dispersions are (for large x) 

(P - Pnf 
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FIG. 6—The constrained probability P(x \ v) of eq. (7.5) giving the distribution of x = -V2F/a2 for peaks. (The x used here is 1.58 times that in the text.) 

Here g and G are defined by equations (6.9) and (4.3), and/(x) is given by equation (A15); it is monotonie, ~x8 for small x and ~x3 

for large x. This probability distribution function (7.5) is plotted in Figure 6 for a specific value of y appropriate to galactic scale 
peaks in the adiabatic CDM picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at xm, 
fitted by equation (6.17). 

i) The Distribution of Ellipticity and Prolateness 
Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we need the conditional probability 

for the asymmetry parameters e and p subject to the constraint that the peak has a given height v and x. This turns out to be 
independent of v : 

3255/2 V8 

Pep(e,p\v,x)dedp=Pep(e,p\x)dedp = -^-ÿ^j^e~(5l2)x2(3e2 + p2)W(e,p)dedp. (7.6) 

This result and details of the subsequent discussion are given in Appendix C. The function W(e, p) is a polynomial of order 5 in both 
e and p which is constrained to vanish outside of the | p | < e, e >0 domain. Indeed, the allowed domain is the interior of a triangle 
bounded by the points in the (e, p)-plane: (0, 0), (¿, —£), and (^, ^). See Appendix C for details of the form of W. We plot various 
contour lines of the probability distribution (7.6) in Figure 7 for a variety of yv. We have taken x = x* as the constraint which, 
according to equations (6.13) and (6.19), is the mean value and most probable value for large yv. 

Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely 
triaxially asymmetric, since ~ (^i + Indeed, in the large x limit, e and p are small, and we can approximate P by a 
Gaussian : 
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FIG. 6—The constrained probability P(x \ v) of eq. (7.5) giving the distribution of x = -V2F/a2 for peaks. (The x used here is 1.58 times that in the text.) 

Here g and G are defined by equations (6.9) and (4.3), and/(x) is given by equation (A15); it is monotonie, ~x8 for small x and ~x3 

for large x. This probability distribution function (7.5) is plotted in Figure 6 for a specific value of y appropriate to galactic scale 
peaks in the adiabatic CDM picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at xm, 
fitted by equation (6.17). 

i) The Distribution of Ellipticity and Prolateness 
Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we need the conditional probability 

for the asymmetry parameters e and p subject to the constraint that the peak has a given height v and x. This turns out to be 
independent of v : 

3255/2 V8 

Pep(e,p\v,x)dedp=Pep(e,p\x)dedp = -^-ÿ^j^e~(5l2)x2(3e2 + p2)W(e,p)dedp. (7.6) 

This result and details of the subsequent discussion are given in Appendix C. The function W(e, p) is a polynomial of order 5 in both 
e and p which is constrained to vanish outside of the | p | < e, e >0 domain. Indeed, the allowed domain is the interior of a triangle 
bounded by the points in the (e, p)-plane: (0, 0), (¿, —£), and (^, ^). See Appendix C for details of the form of W. We plot various 
contour lines of the probability distribution (7.6) in Figure 7 for a variety of yv. We have taken x = x* as the constraint which, 
according to equations (6.13) and (6.19), is the mean value and most probable value for large yv. 

Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely 
triaxially asymmetric, since ~ (^i + Indeed, in the large x limit, e and p are small, and we can approximate P by a 
Gaussian : 

Pep(e, P) * Pep(em, Pm) ^Xp 
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where the most probable values and their dispersions are (for large x) 
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Fig. 7.—The 95%, 90%, and 50% contours of the conditional probability for ellipticity e = y/x and prolateness p = z/x subject to the constraint of given x for 
peaks (eq. [7.6]). (The x and x* used here are 1.58 % y-1 times those used in the text, so v = 1, 2,..., 6 corresponds to the different curves.) This figure demonstrates 
that, even for high v, the shapes are triaxial. The values of e and p are constrained to lie in the triangle. 

The cross term proportional to (e — em)(p — pm) has a coefficient which rapidly goes to zero for large x and can be ignored. Thus, 
although pm goes to zero much more rapidly than em, the constant Pep contours should be approximately elliptical with axial ratios 
1.4 to 1 and with principal axes oriented along the e and p axes. This is evident from Figure 7. High peaks tend to he more spherically 
symmetric than low ones. This is evident from equation (7.7): sphericity is approached as (51/2yv)_1; the dispersion about sphericity 
approaches zero at about the same rate. 

However, for CDM, we typically have x* ^ (0.4-0.7)v, so significant deviation from sphericity is expected even for v æ 3. For 
example, for peaks on the scale Rs = 0.5 h_1 Mpc of height v = 2.7 in the adiabatic cold dark matter model with Q. = 1 and h = 0.5, 
we have y = 0.62; hence, the most probable value of x ä l.Sx* æ 2.5; therefore, the most probable æ 0.17 and pm& 5 x 10“3 by 
equation (7.7). These values are in good accord with Figure 7. The eigenvalues would then be related by = 1.3/l2 = 1.723. The 
axial ratios (eq. [7.2]) immediately follow: the long (3) semiaxis is only 1.3 times the short one. However, since the short axis goes 
nonlinear first (collapsing when the expansion factor is 1.3 smaller than when the 2-axis collapses in the Zeldovich 1970 
approximation), this asymmetry amplifies in the nonlinear regime (Lin, Mestel, and Shu 1965; Zeldovich 1970). The generic 
collapsed structure will be pancake-like. 

Note that artificial spherical smoothing tends to sphericalize pancakes and filaments, so the asymmetry parameters obtained 
from this distribution will generally be underestimates—unless the filtering is physical. 

b) The Average Shape and Its Dispersion 
Although we have determined the shape in the immediate neighborhood of the peak from § Vila, we still need to obtain the 

higher order terms in the Taylor expansion in r. We also wish to determine how far out we can go before the density at r becomes 
uncorrelated with that of the peak. The former requires the average of F(r), the latter requires its dispersion. 

A peak is characterized by the parameters C = (v, 2l5 /2> ft 7}- The latter three parameters are the Euler angles which 
define the orientation of the principle axes of Cij. We also let C include the information that r = 0 is a peak. The shape about the 
peak would be fully determined if we could compute a hierarchy of conditional probability distributions PfF^), ..., F^)! C] as 
iV—> go. Here we will just compute F[F(r) | C]i7F(r), the probability that at a displacement r from the peak (taken to be at r = 0), the 
density field has value F. As we show in Appendix D, this is a Gaussian distribution characterized by the mean value of F at r 
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Fig. 7.—The 95%, 90%, and 50% contours of the conditional probability for ellipticity e = y/x and prolateness p = z/x subject to the constraint of given x for 
peaks (eq. [7.6]). (The x and x* used here are 1.58 % y-1 times those used in the text, so v = 1, 2,..., 6 corresponds to the different curves.) This figure demonstrates 
that, even for high v, the shapes are triaxial. The values of e and p are constrained to lie in the triangle. 

The cross term proportional to (e — em)(p — pm) has a coefficient which rapidly goes to zero for large x and can be ignored. Thus, 
although pm goes to zero much more rapidly than em, the constant Pep contours should be approximately elliptical with axial ratios 
1.4 to 1 and with principal axes oriented along the e and p axes. This is evident from Figure 7. High peaks tend to he more spherically 
symmetric than low ones. This is evident from equation (7.7): sphericity is approached as (51/2yv)_1; the dispersion about sphericity 
approaches zero at about the same rate. 

However, for CDM, we typically have x* ^ (0.4-0.7)v, so significant deviation from sphericity is expected even for v æ 3. For 
example, for peaks on the scale Rs = 0.5 h_1 Mpc of height v = 2.7 in the adiabatic cold dark matter model with Q. = 1 and h = 0.5, 
we have y = 0.62; hence, the most probable value of x ä l.Sx* æ 2.5; therefore, the most probable æ 0.17 and pm& 5 x 10“3 by 
equation (7.7). These values are in good accord with Figure 7. The eigenvalues would then be related by = 1.3/l2 = 1.723. The 
axial ratios (eq. [7.2]) immediately follow: the long (3) semiaxis is only 1.3 times the short one. However, since the short axis goes 
nonlinear first (collapsing when the expansion factor is 1.3 smaller than when the 2-axis collapses in the Zeldovich 1970 
approximation), this asymmetry amplifies in the nonlinear regime (Lin, Mestel, and Shu 1965; Zeldovich 1970). The generic 
collapsed structure will be pancake-like. 

Note that artificial spherical smoothing tends to sphericalize pancakes and filaments, so the asymmetry parameters obtained 
from this distribution will generally be underestimates—unless the filtering is physical. 

b) The Average Shape and Its Dispersion 
Although we have determined the shape in the immediate neighborhood of the peak from § Vila, we still need to obtain the 

higher order terms in the Taylor expansion in r. We also wish to determine how far out we can go before the density at r becomes 
uncorrelated with that of the peak. The former requires the average of F(r), the latter requires its dispersion. 

A peak is characterized by the parameters C = (v, 2l5 /2> ft 7}- The latter three parameters are the Euler angles which 
define the orientation of the principle axes of Cij. We also let C include the information that r = 0 is a peak. The shape about the 
peak would be fully determined if we could compute a hierarchy of conditional probability distributions PfF^), ..., F^)! C] as 
iV—> go. Here we will just compute F[F(r) | C]i7F(r), the probability that at a displacement r from the peak (taken to be at r = 0), the 
density field has value F. As we show in Appendix D, this is a Gaussian distribution characterized by the mean value of F at r 
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critical behavior is killed
for

(C − CE) ≲ (*CE~0.1CE

conjecture!

( = −!

( = !

non-Gaussianity!?



• PBHs have started to play an important role in 
astrophysics/cosmology/gravity/particle physics or in 
fundamental physics

• They may (have already?) become a leading character.

• There are a lot of fascinating issues associated 
with/related to PBHs waiting for us to be solved.
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Summary of 
Summary without Summary

So, whether Florian wins the bet or not, 

bottoms up!  Kanpai! 乾杯！


