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Critical  modelO(N)

— Example:  conformal field theory (CFT)O(N )

 symmetry is ubiquitous in physicsO(N )

S = ∫ ddx ( 1
2

(∂μϕi)2 +
1
2

m2ϕiϕi +
λ

24
(ϕiϕi)2)

: Critical Ising model

: Critical XY model

: Heisenberg model

N = 1
N = 2
N = 3

For , the interaction is relevantd < 4

  CFTO(N )

Physical application at 

Liquid-gas transition in water and carbon dioxide

The -line in helium and phase transition in XY ferromagnets

Isotropic magnets

d = 3

λ
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 Assumption of Spectrum continuity

Spectrum continuity:  

 CFT is assumed to be defined even for non-integer values of  and . 

The whole set of CFT data ( the spectrum of operator and all their correlators) 
varies continuously with  and .

O(N ) N d

N d

— How to make sense of the  symmetry for non-integer ?  Binder & Rychkov, 1911.07895O(N ) N

— This assumption is observed (at least for low lying operators) by 
numerical simulations of the  lattice models at various .O(N ) N

e.g. the critical exponents vary continuously with .      Hasenbusch, 2112.03783N

Deligne Category              “Categorical symmetry”Rep(O(N ))

We will focus on invalid  irreps at integer O(N ) N
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 irreducible representation (irrep)O(N)

The conformal primary operators

 irrep 


Lorentz  irrep L


Scaling dimension  (spectrum)

O(N ) λ

SO(d)

Δ(N, d)
{

- A valid  irreps are labelled by partitions O(N ) λ = (λ1, . . . , λl)
with length  not exceeding the rank of the group l r = ⌊N/2⌋

: scalar irrep,    : vector irrep,    

: symmetric traceless irrep,     antisymmetric irrep

() (1)
(2) (1,1)

Partition function: Z(N) = Trℋ ge−βH = ∑
λ,l(λ)≤r

n(λ)

∑
i=1

qΔλ,i(N) χO(N)
λ

Character:  χO(N)
λ (x1, . . . , xr) = Trλ g, where g ∈ O(N )
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Spectrum degeneracies at Wilson-Fisher fixed point

Scaling dimension 

of Lorentz scalar  in 
different  irreps


Henriksson, 2201.09520

Δ(N )
∂2ϕ4

O(N )

Examples in the region d = 4 − ε, ε ≪ 1
where the spectrum can be calculated perturbatively in power series of ε

 irrep is invalid for . How to make sense of the degeneracies?(2,2) N = 1,2
Will the degeneracies still exist for higher orders?
Are there other degeneracies of this type? How to find them?

N = 1,
2(N + 2)

N + 8
=

6
N + 8

=
2
3

N = 2,
N + 4
N + 8

=
6

N + 8
=

3
5
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Evanescent operators

In literature, the evanescent operators are operators that appear away from  
but vanish at 

d = 4
d = 4

These degeneracies are related to evanescent operators

—Evanescent operators in scalar CFT and EFT




Hogervorst, Rychkov & van Rees, 1512.00013

Cao, Herzog, Melia & Roosmale Nepveu, 2105.12742

δμ1[ν1δ|μ2|ν2δ|μ3|ν3δ|μ4|ν4δ|μ5|ν5] (∂μ1
∂ν1

ϕ) (∂μ2
∂ν2

ϕ) (∂μ3
∂ν3

ϕ) (∂μ4
∂ν4

ϕ) (∂μ5
∂ν5

ϕ)

— Four fermion evanescent operators, vanishing in  for 




Dugan & Grinstein, Phys.Lett.B 256 (1991) 239-244

d = 4 n ≥ 5
ψ̄γ[μ1 . . . γμn]ψ′￼ ψ̄γ[μ1

. . . γμn]ψ′￼

— Gluonic evanescent operators




Jin, Ren, Yang & Yu, 2208.08976

δμ1[ν1δ|μ2|ν2δ|μ3|ν3δ|μ4|ν4δ|μ5|ν5] Tr (Fμ1ν1
Fμ2ν2

Fμ3ν3
Fμ4ν4

Fμ5ν5)
We now relax the definition of evanescent operator as operators that vanish at 
certain integer values of parameter N δa1[b1δ|a2|b2]ϕa1ϕb1 (∂μϕa2) (∂μϕb2)
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Violation of unitarity

Evanescent operators contribute to the violation of unitarity at non-integer dimensions

At some integer values of  and , the  CFT is tested to be unitaryN d O(N )
e.g. the existence of unitary islands of the critical O(N) model in  dimensions with 

 has been confirmed in a bootstrap approach

El-Showk, Paulos,  Poland, Rychkov, Simmons-Duffin &Vichi, 1203.6064 

Kos, Poland, Rychkov, Simmons-Duffin &Vichi, 1603.04436 

d = 3
N = 1,2,3

At non-integer dimension, evanescent operators can have negative norms 
and lead to complex anomalous dimensions at WF fixed point.


Hogervorst, Rychkov & van Rees, 1512.00013 

We find that some evanescent operators gives negative contributions to the 
partition functions at some integer N

And the cancellation of these negative contributions leads to the degeneracies
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Other Motivations for non-integer dimension

There are other reasons to consider non-integer dimension even if 
we are interested only in physics of integer N

— In  expansion1/N

— Dimensional regularization

Treat the variable of gauge group as a parameter

Treat the spacetime dimension as a parameter
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2. Specialization rule for character of  irrepO(N)

A proper definition of analytic continuation of  representation theoryO(N )

(1) at the level of character theory and partition function

(2) the continuation will recover the ordinary partition function at every integer N

 preserve the algebras of characters at each → N

Decomposition of product of irreps: λ1 ⊗ λ2 = ⊕λ mλ
λ1λ2

(N ) λ

Algebras of characters:               χO(N)
λ1

χO(N)
λ2

= ∑
λ,l(λ)≤r

mλ
λ1λ2

(N ) χO(N)
λ

Newell-Littlewood numbers             m̄λ
λ1λ2

(N ) = lim
N→∞

mλ
λ1λ2



Example: 





N ≥ 4, (1) × (1) = (2) + (1,1) + ()

N = 3, (1) × (1) = (2) + (1) + ()

N = 2, (1) × (1) = (2) + 2 ()

2. Specialization rule for character of  irrepO(N)



A proper definition of the continued character  should 

(1) satisfy the algebra in the large  asymptotic limit 

(2) and recover the algebra at every finite 

χ̄O(N)
λ

N
N

(1)   χ̄O(N)
λ1

χ̄O(N)
λ2

= ∑
all λ

m̄λ
λ1λ2

χ̄O(N)
λ

(2) Define a map from the continued character  to the valid character 
at given value of .    (Specialization rule)

χ̄O(N)
λ

N

K. Koike and I. Terada, Journal of Algebra 107, 466 (1987). 

2. Specialization rule for character of  irrepO(N)

Continued character χ̄O(N)
λ



Specialization rule at : N = N0

If  is a valid irrep at ,     ,λ N0 l(λ) ≤ r

χ̄O(N0)
λ = 0, ± χO(N0)

λ′￼

χ̄O(N0)
λ = χO(N0)

λ

If  is a invalid irrep at ,   λ N0 l(λ) > r,

Where  is a valid irrep at λ′￼ N0







N ≥ 4, (1) × (1) = (2) + (1,1) + ()

N = 3, (1) × (1) = (2) + (1) + ()

N = 2, (1) × (1) = (2) + 2()







χ̄O(N≥4)
(1,1) = χO(N≥4)

(1,1)

χ̄O(3)
(1,1) = χO(3)

(1)

χ̄O(2)
(1,1) = χO(2)

()

2. Specialization rule for character of  irrepO(N)



I will give a practical way to compute the specialization of a character

χO(N)
(1) (x1, . . . , xr) =

1 − (−1)N

2
+

N

∑
i=1

(xi + x−1
i )

The continued characters  is a functional of   χ̄O(N)
λ χ̄O(N)

(1)

χ̄O(N)
λ = det[pλi−i+j − pλi−i−j]

where  is the th symmetric product of  for  and pn n χ̄O(N)
(1) n ≥ 0 pn<0 = 0

Characters of vector irrep: 

χ̄O(N)
(1) (x1, . . . , xr) = χO(N)

(1) (x1, . . . , xr), ∀ integer N ≥ 1

K. Koike and I. Terada, 
Journal of Algebra 107, 
466 (1987). 

2. Specialization rule for character of  irrepO(N)



 is defined by the plethystic exponentialpn

∞

∑
n=0

unpn = exp [
∞

∑
k=1

1
uk

χ̄V(xk)], χ̄V ≡ χ̄O(N)
(1)












……

p0 = 1
p1 = χ̄V

p2 =
1
2 (χ̄V(x)2 + χ̄V(x2))

p3 =
1
6 (χ̄V(x)3 + 3χ̄V(x)χ̄V(x2) + 2χ̄V(x3))

2. Specialization rule for character of  irrepO(N)



For example χ̄O(N)
(1,1) =

1
2 [χO(N)

(1) (x)]
2

−
1
2

χO(N)
(1) (x2)

For ,     N ≥ 4 χ̄O(N≥4)
(1,1) (x) = χO(N≥4)

(1,1) (x)

χ̄O(3)
(1,1) = 1 + x1 + x−1

1 = χO(3)
(1) (x)For ,N = 3

For ,N = 2 χ̄O(2)
(1,1) = 1 = χO(2)

() (x)

χO(N)
(1) (x1, . . . , xr) =

1 − (−1)N

2
+

N

∑
i=1

(xi + x−1
i )2. Specialization rule for character of  irrepO(N)



More examples:

The negative sign lead to the degeneracies

2. Specialization rule for character of  irrepO(N)



Specialization rule for character of  irrepSU(N)

At ,       N = 3 χ̄SU(3)
(3,3,2) = χSU(3)

(1,1)

Clipping rule:

1. Identify the West Coast;

2. Determine whether to clip;

3. Clip and repeat the steps.



Clipping rule for character of  irrepO(N)
The Clipping rule for  is more complicatedO(N )

1. Identify the East Coast labelled by i − j

χ̄O(7)
(5,4,3,3,3,2,1)

2. Identify the clipping center:  s = r = ⌊N/2⌋

3. Identify the clipping patch on the coast
: the number of boxes strictly below the centernB




the number of boxes east or north from the center

nA = nB +
1 + (−1)N

2

4. Clip and repeat steps

χ̄O(N)
λ = (−1)nrows+N χ̄O(N)

λnew

= − χ̄O(7)
(5,4,3,3,1,1,1)

χ̄O(7)
(5,4,3,3,1,1,1) = χ̄O(7)

(5,4,2) = χO(7)
(5,4,2)

→ χ̄O(7)
(5,4,3,3,3,2,1) = − χO(7)

(5,4,2)
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3. Application to partition function
Following the continuation of the characters, one get the continued partition function.

Z̄ = ∑
all λ

n(λ)

∑
i=1

qΔλ,i(N) χ̄O(N)
λ

Specialize at give ,N0 Z̄ |N=N0
= Z(N0)

Z̄ |N=N0
= ∑

λ,l(λ)≤r

n′￼(λ)

∑
i=1

qΔλ,i(N0) χ̄O(N0)
λ

+∑
λ0

n(λ0)

∑
i=1

qΔλ0,i(N0) χ̄O(N0)
λ0 +∑

λ+

n(λ+)

∑
i=1

qΔλ+,i(N0) χ̄O(N0)
λ+ + ∑

λ−

n(λ−)

∑
i=1

qΔλ−,i(N0) χ̄O(N0)
λ−

= ∑
λ,l(λ)≤r

χO(N0)
λ (

n′￼(λ)

∑
i=1

qΔλ,i(N0) +
n(λ+)

∑
i=1

qΔλ+,i(N0) −
n(λ−)

∑
i=1

qΔλ−,i(N0)) χ̄O(N0)
λ0 = 0, χ̄O(N0)

λ± = ± χO(N0)
λ′￼



3. Application to partition function

Z(N0) = ∑
λ,l(λ)≤r

n(λ)

∑
i=1

qΔλ,i(N0) χO(N0)
λ

Compared with 

1.Direct evanescent operators

2.Pair annihilation evanescent operators

Operators with irrep λ0

Operators with irrep λ−

Δλ−,i(N0) = Δλ+, j(N0) or Δλ,k(N0)

Z̄ |N=(N0) = ∑
λ,l(λ)≤r

χO(N0)
λ (

n′￼(λ)

∑
i=1

qΔλ,i(N0) +
n(λ+)

∑
i=1

qΔλ+,i(N0) −
n(λ−)

∑
i=1

qΔλ−,i(N0))

Null at . No contribution to partition function. N0

Negative contribution to the partition function. 

Must be cancelled. 



3. Application to partition function

χ̄O(2)
(2,2) = − χO(2)

(2) (x)

χ̄O(1)
(2,2) = − χO(1)

() (x)
  

and 
f (N ) = (44 + 9N − 624 − 8N + 9N2)/(6(N + 8))

f (N = 1) = 14/27 = 14/(3(N + 8)) |N=1

 is given as the root of a cubic equation, with g(N )
g(N = 2) = 7/15 = 14/(3(N + 8)) |N=2

Δλ−,i(N0) = Δλ,k(N0)
Henriksson, 2201.09520



3. Application to partition function

One more example


Henriksson, 2201.09520

degeneracy at 
N = 2

5
2

=
4

N + 8
=

N + 2
N + 8

χ̄O(2)
(2,1,1) = − χO(2)

() (x)

Δλ−,i(N0) = Δλ+, j(N0)

χ̄O(2)
(1,1) = χO(2)

() (x)

— Some  operators will remain and 
contribute to the physics spectrum

λ+

— All our examples are leading order results. 
Interesting to check it to higher order or non-
perturbatively.
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— We identify new degeneracies in the energy spectrum  of theories with a 
global  symmetry

{Δ(N )}
O(N )

Summary

where  is treated as a continuous parameter, and assuming spectrum continuity N

— We also show that these degeneracies originate from the evanescent states of a 
global  that drops out of the spectrum in pairsO(N )

The contributions of two states to the partition function have to cancel, which in turn 
require to have equal energy

—We illustrate the findings in the  CFT in  and work at leading 
perturbative order of , but we emphasize that the degeneracies in general hold at the 
non-perturbative level and conformal symmetry is not a requisite.

O(N ) d = 4 − ε
ε
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— a full set of degeneracies in the spectra of the  modelO(N )

Outlook

— verification of the degeneracies beyond leading order or non-perturbatively

— Will the degeneracies provide useful input/constraint to the bootstrap program?

— continuation of spinor irrep and degeneracies of fermionic theory

— study of other groups like sp(2N )

— Are there further hidden symmetry?

— study of  symmetry at non-integer O(N ) N

— study of spacetime evanescent operators under a continuation of 
the spacetime dimension



Thank you!
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