## Spectrum Degeneracies in models with $\mathrm{O}(\mathrm{N})$ symmetry from Quantum Evanescence

## Weiguang Cao

Kavli IPMU，the University of Tokyo
Collaborated with Xiaochuan Lu and Tom Melia，2312．10139

Outline

1. Motivation: Spectrum degeneracies in $O(N)$ model
2. Specialization rule for character of $O(N)$ irrep
3. Applications to continued partition function
4. Summary and Outlook

## Critical $O(N)$ model

$O(N)$ symmetry is ubiquitous in physics

- Example: $O(N)$ conformal field theory (CFT)

Physical application at $d=3$

$$
\begin{array}{ll}
N=1: \text { Critical Ising model } & \text { Liquid-gas transition in water and carbon dioxide } \\
N=2: \text { Critical } \mathrm{XY} \text { model } & \text { The } \lambda \text {-line in helium and phase transition in XY ferromagnets } \\
N=3: \text { Heisenberg model } & \text { Isotropic magnets }
\end{array}
$$

$S=\int d^{d} x\left(\frac{1}{2}\left(\partial_{\mu} \phi^{i}\right)^{2}+\frac{1}{2} m^{2} \phi^{i} \phi_{i}+\frac{\lambda}{24}\left(\phi^{i} \phi_{i}\right)^{2}\right) \quad$ For $d<4$, the interaction is relevant

## Assumption of Spectrum continuity

## Spectrum continuity: $O(N)$ CFT is assumed to be defined even for non-integer values of $N$ and $d$. The whole set of CFT data ( the spectrum of operator and all their correlators) varies continuously with $N$ and $d$.

- This assumption is observed (at least for low lying operators) by numerical simulations of the $O(N)$ lattice models at various $N$.
e.g. the critical exponents vary continuously with $N$. Hasenbusch, 2112.03783
- How to make sense of the $O(N)$ symmetry for non-integer $N$ ? Binder \& Rychkov, 1911.07895

Deligne Category $\overline{\operatorname{Rep}}(O(N))$ "Categorical symmetry"
We will focus on invalid $O(N)$ irreps at integer $N$

## $O(N)$ irreducible representation (irrep)

The conformal primary operators $\left\{\begin{array}{l}O(N) \text { irrep } \lambda \\ \text { Lorentz } S O(d) \text { irrep L } \\ \text { Scaling dimension } \Delta(N, d) \text { (spectrum) }\end{array}\right.$

- A valid $O(N)$ irreps are labelled by partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ with length $l$ not exceeding the rank of the group $r=\lfloor N / 2\rfloor$
(): scalar irrep, (1): vector irrep,
(2): symmetric traceless irrep, $(1,1)$ antisymmetric irrep

Character: $\chi_{\lambda}^{O(N)}\left(x_{1}, \ldots, x_{r}\right)=\operatorname{Tr}_{\lambda} g, \quad$ where $g \in O(N)$
Partition function: $Z^{(N)}=\operatorname{Tr}_{\mathscr{H}} g e^{-\beta H}=\sum_{\lambda, l(\lambda) \leq r} \sum_{i=1}^{n(\lambda)} q^{\Delta_{\lambda, i}(N)} \chi_{\lambda}^{O(N)}$

## Spectrum degeneracies at Wilson-Fisher fixed point

Examples in the region $d=4-\varepsilon, \varepsilon \ll 1$ where the spectrum can be calculated perturbatively in power series of $\varepsilon$

$(2,2)$ irrep is invalid for $N=1,2$. How to make sense of the degeneracies?
Will the degeneracies still exist for higher orders?
Are there other degeneracies of this type? How to find them?

## Evanescent operators

These degeneracies are related to evanescent operators
In literature, the evanescent operators are operators that appear away from $d=4$ but vanish at $d=4$

- Four fermion evanescent operators, vanishing in $d=4$ for $n \geq 5$

$$
\bar{\psi} \gamma^{\left[\mu_{1}\right.} \ldots \gamma^{\left.\mu_{n}\right]} \psi^{\prime} \bar{\psi} \gamma_{\left[\mu_{1}\right.} \ldots \gamma_{\left.\mu_{n}\right]} \psi^{\prime}
$$

Dugan \& Grinstein, Phys.Lett.B 256 (1991) 239-244
-Evanescent operators in scalar CFT and EFT

$$
\delta^{\mu_{1}\left[\nu_{1}\right.} \delta^{\left|\mu_{2}\right| \nu_{2}} \delta^{\left|\mu_{3}\right| \nu_{3}} \delta^{\left|\mu_{4}\right| \nu_{4}} \delta^{\left.\left|\mu_{5}\right| \nu_{5}\right]}\left(\partial_{\mu_{1}} \partial_{\nu_{1}} \phi\right)\left(\partial_{\mu_{2}} \partial_{\nu_{2}} \phi\right)\left(\partial_{\mu_{3}} \partial_{\nu_{3}} \phi\right)\left(\partial_{\mu_{4}} \partial_{\nu_{4}} \phi\right)\left(\partial_{\mu_{5}} \partial_{\nu_{5}} \phi\right)
$$

Hogervorst, Rychkov \& van Rees, 1512.00013 Cao, Herzog, Melia \& Roosmale Nepveu, 2105.12742

- Gluonic evanescent operators

$$
\delta^{\mu_{1}\left[\nu_{1}\right.} \delta^{\left|\mu_{2}\right| \nu_{2}} \delta^{\left|\mu_{3}\right| \nu_{3}} \delta^{\left|\mu_{4}\right| \nu_{4}} \delta^{\left.\left|\mu_{5}\right| \nu_{5}\right]} \operatorname{Tr}\left(F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}\right)
$$

Jin, Ren, Yang \& Yu, 2208.08976
We now relax the definition of evanescent operator as operators that vanish at certain integer values of parameter $N$

$$
\delta^{a_{1}\left[b_{1}\right.} \delta^{\left.\left|a_{2}\right| b_{2}\right]} \phi^{a_{1}} \phi^{b_{1}}\left(\partial^{\mu} \phi^{a_{2}}\right)\left(\partial_{\mu} \phi^{b_{2}}\right)
$$

## Violation of unitarity

Evanescent operators contribute to the violation of unitarity at non-integer dimensions
At some integer values of $N$ and $d$, the $O(N)$ CFT is tested to be unitary e.g. the existence of unitary islands of the critical $\mathrm{O}(\mathrm{N})$ model in $d=3$ dimensions with $N=1,2,3$ has been confirmed in a bootstrap approach

El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin \& Vichi, 1203.6064
Kos, Poland, Rychkov, Simmons-Duffin \&Vichi, 1603.04436

At non-integer dimension, evanescent operators can have negative norms and lead to complex anomalous dimensions at WF fixed point.

Hogervorst, Rychkov \& van Rees, 1512.00013
We find that some evanescent operators gives negative contributions to the partition functions at some integer $N$

And the cancellation of these negative contributions leads to the degeneracies

## Other Motivations for non-integer dimension

There are other reasons to consider non-integer dimension even if we are interested only in physics of integer N

- In $1 / N$ expansion

Treat the variable of gauge group as a parameter

- Dimensional regularization

Treat the spacetime dimension as a parameter

Outline

1. Motivation: Spectrum degeneracies in $O(N)$ model
2. Specialization rule for character of $O(N)$ irrep
3. Applications to continued partition function
4. Summary and Outlook

## 2. Specialization rule for character of $O(N)$ irrep

A proper definition of analytic continuation of $O(N)$ representation theory
(1) at the level of character theory and partition function
(2) the continuation will recover the ordinary partition function at every integer $N$
$\rightarrow$ preserve the algebras of characters at each $N$
Decomposition of product of irreps: $\lambda_{1} \otimes \lambda_{2}=\bigoplus_{\lambda} m_{\lambda_{1} \lambda_{2}}^{\lambda}(N) \lambda$
Algebras of characters:

Newell-Littlewood numbers

$$
\chi_{\lambda_{1}}^{O(N)} \chi_{\lambda_{2}}^{O(N)}=\sum_{\lambda, l(\lambda) \leq r} m_{\lambda_{1} \lambda_{2}}^{\lambda}(N) \chi_{\lambda}^{O(N)}
$$

$$
\bar{m}_{\lambda_{1} \lambda_{2}}^{\lambda}(N)=\lim _{N \rightarrow \infty} m_{\lambda_{1} \lambda_{2}}^{\lambda}
$$

## 2. Specialization rule for character of $O(N)$ irrep

$$
\begin{array}{ll}
\text { Example: } & N \geq 4, \quad(1) \times(1)=(2)+(1,1)+() \\
& N=3, \quad(1) \times(1)=(2)+(1)+() \\
& N=2, \quad(1) \times(1)=(2)+2()
\end{array}
$$

## 2. Specialization rule for character of $O(N)$ irrep

A proper definition of the continued character $\bar{\chi}_{\lambda}^{O(N)}$ should
(1) satisfy the algebra in the large $N$ asymptotic limit
(2) and recover the algebra at every finite $N$

Continued character $\bar{\chi}_{\lambda}^{O(N)}$
(1) $\bar{\chi}_{\lambda_{1}}^{O(N)} \bar{\chi}_{\lambda_{2}}^{O(N)}=\sum_{\text {all } \lambda} \bar{m}_{\lambda_{1} \lambda_{2}}^{\lambda} \bar{\chi}_{\lambda}^{O(N)}$
(2) Define a map from the continued character $\bar{\chi}_{\lambda}^{O(N)}$ to the valid character at given value of $N$. (Specialization rule)
K. Koike and I. Terada, Journal of Algebra 107, 466 (1987).

## 2. Specialization rule for character of $O(N)$ irrep

Specialization rule at $N=N_{0}$ :
If $\lambda$ is a valid irrep at $N_{0}, \quad l(\lambda) \leq r, \quad \bar{\chi}_{\lambda}^{O\left(N_{0}\right)}=\chi_{\lambda}^{O\left(N_{0}\right)}$
If $\lambda$ is a invalid irrep at $N_{0}, \quad l(\lambda)>r, \quad \bar{\chi}_{\lambda}^{O\left(N_{0}\right)}=0, \pm \chi_{\lambda^{\prime}}^{O\left(N_{0}\right)}$
Where $\lambda^{\prime}$ is a valid irrep at $N_{0}$

$$
\begin{array}{lll}
N \geq 4, & (1) \times(1)=(2)+(1,1)+() & \bar{\chi}_{(1,1)}^{O(N \geq 4)}=\chi_{(1,1)}^{O(N \geq 4)} \\
N=3, & (1) \times(1)=(2)+(1)+() & \bar{\chi}_{(1,1)}^{O(3)}=\chi_{(1)}^{O(3)} \\
N=2, & (1) \times(1)=(2)+2() & \bar{\chi}_{(1,1)}^{O(2)}=\chi_{()}^{O(2)}
\end{array}
$$

## 2. Specialization rule for character of $O(N)$ irrep

I will give a practical way to compute the specialization of a character

Characters of vector irrep:

$$
\chi_{(1)}^{O(N)}\left(x_{1}, \ldots, x_{r}\right)=\frac{1-(-1)^{N}}{2}+\sum_{i=1}^{N}\left(x_{i}+x_{i}^{-1}\right)
$$

$$
\bar{\chi}_{(1)}^{O(N)}\left(x_{1}, \ldots, x_{r}\right)=\chi_{(1)}^{O(N)}\left(x_{1}, \ldots, x_{r}\right), \quad \forall \text { integer } N \geq 1
$$

The continued characters $\bar{\chi}_{\lambda}^{O(N)}$ is a functional of $\bar{\chi}_{(1)}^{O(N)}$

$$
\bar{\chi}_{\lambda}^{O(N)}=\operatorname{det}\left[p_{\lambda_{i}-i+j}-p_{\lambda_{i}-i-j}\right] \quad \begin{array}{ll} 
& \begin{array}{l}
\text { K. Koike and I. Terada, } \\
\text { Journal of Algebra 107, } \\
\\
466(1987) .
\end{array}
\end{array}
$$

where $p_{n}$ is the $n$th symmetric product of $\bar{\chi}_{(1)}^{O(N)}$ for $n \geq 0$ and $p_{n<0}=0$

## 2. Specialization rule for character of $O(N)$ irrep

$p_{n}$ is defined by the plethystic exponential

$$
\begin{aligned}
& \quad \sum_{n=0}^{\infty} u^{n} p_{n}=\exp \left[\sum_{k=1}^{\infty} \frac{1}{u^{k}} \bar{\chi}_{V}\left(x^{k}\right)\right], \quad \bar{\chi}_{V} \equiv \bar{\chi}_{(1)}^{O(N)} \\
& p_{0}=1 \\
& p_{1}=\bar{\chi}_{V} \\
& p_{2}=\frac{1}{2}\left(\bar{\chi}_{V}(x)^{2}+\bar{\chi}_{V}\left(x^{2}\right)\right) \\
& p_{3}=\frac{1}{6}\left(\bar{\chi}_{V}(x)^{3}+3 \bar{\chi}_{V}(x) \bar{\chi}_{V}\left(x^{2}\right)+2 \bar{\chi}_{V}\left(x^{3}\right)\right)
\end{aligned}
$$


For example $\quad \bar{\chi}_{(1,1)}^{O(N)}=\frac{1}{2}\left[\chi_{(1)}^{O(N)}(x)\right]^{2}-\frac{1}{2} \chi_{(1)}^{O(N)}\left(x^{2}\right)$
For $N \geq 4, \quad \bar{\chi}_{(1,1)}^{O(N \geq 4)}(x)=\chi_{(1,1)}^{O(N \geq 4)}(x)$
For $N=3, \quad \bar{\chi}_{(1,1)}^{O(3)}=1+x_{1}+x_{1}^{-1}=\chi_{(1)}^{O(3)}(x)$
For $N=2, \quad \bar{\chi}_{(1,1)}^{O(2)}=1=\chi_{()}^{O(2)}(x)$

| $\bar{\chi}_{\lambda}^{O(N)}$ | $N=2$ | $N=3$ | $N=4$ | $N=5$ | $N=6$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(1,1)$ | $\chi_{()}^{O(N)}$ | $\chi_{(1)}^{O(N)}$ | $\chi_{(1,1)}^{O(N)} \rightarrow$ |  |  |

## 2. Specialization rule for character of $O(N)$ irrep

More examples:

| $\bar{\chi}_{\lambda}^{O(N)}$ | $N=2$ | $N=3$ | $N=4$ | $N=5$ | $N=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(1,1)$ | $\chi_{()}^{O(N)}$ | $\chi_{(1)}^{O(N)}$ | $\chi_{(1,1)}^{O(N)} \rightarrow$ |  |  |
| $(2,2)$ | $-\chi_{(2)}^{O(N)}$ | 0 | $\chi_{(2,2)}^{O(N)} \rightarrow$ |  |  |
| $(2,1,1)$ | $-\chi_{()}^{O(N)}$ | 0 | $\chi_{(2)}^{O(N)}$ | $\chi_{(2,1)}^{O(N)}$ | $\chi_{(2,1,1)}^{O(N)} \rightarrow$ |
| $(2,2,1)$ | $-\chi_{(1)}^{O(N)}$ | $-\chi_{(2)}^{O(N)}$ | 0 | $\chi_{(2,2)}^{O(N)}$ | $\chi_{(2,2,1)}^{O(N)} \rightarrow$ |
| $(2,2,2)$ | $-\chi_{()}^{O(N)}$ | $-\chi_{(2)}^{O(N)}$ | $-\chi_{(2,2)}^{O(N)}$ | 0 | $\chi_{(2,2,2)}^{O(N)} \rightarrow$ |

The negative sign lead to the degeneracies

## Specialization rule for character of $S U(N)$ irrep

$$
\bar{\chi}_{\lambda=\left(\lambda_{1}, \cdots, \lambda_{l}\right)}^{S U(N)}=\left\{\begin{array}{ll}
\chi_{\lambda}^{S U(N)} & N>l \\
\chi_{\left(\lambda_{1}-\lambda_{l}, \cdots, \lambda_{l-1}-\lambda_{l}\right)}^{S U(N)} & N=l \\
0 & N<l
\end{array},\right.
$$

$$
\text { At } N=3, \quad \bar{\chi}_{(3,3,2)}^{S U(3)}=\chi_{(1,1)}^{S U(3)}
$$

Clipping rule:

1. Identify the West Coast;
2. Determine whether to clip;
3. Clip and repeat the steps.

| $\bar{\chi}_{\lambda}^{S U(N)}$ | $N=2$ | $N=3$ | $N=4$ | $N=5$ |
| :---: | :---: | :---: | :---: | :---: |
| $(1,1)$ | $\chi_{()}^{S U(N)}$ | $\chi_{(1,1)}^{S U(N)} \rightarrow$ |  |  |
| $(2,1)$ | $\chi_{(1)}^{S U(N)}$ | $\chi_{(2,1)}^{S U(N)} \rightarrow$ |  |  |
| $(3,1)$ | $\chi_{(2)}^{S U(N)}$ | $\chi_{(3,1)}^{S U(N)} \rightarrow$ |  |  |
| $(2,2)$ | $\chi_{()}^{S U(N)}$ | $\chi_{(2,2)}^{S U(N)} \rightarrow$ |  |  |
| $(1,1,1)$ | 0 | $\chi_{()}^{S U(N)}$ | $\chi_{(1,1,1)}^{S U(N)} \rightarrow$ |  |
| $(2,1,1)$ | 0 | $\chi_{(1)}^{S U(N)}$ | $\chi_{(2,1,1)}^{S U(N)} \rightarrow$ |  |
| $(1,1,1,1)$ | 0 | 0 | $\chi_{()}^{S U(N)}$ | $\chi_{(1,1,1,1)}^{S U(N)} \rightarrow$ |

$$
\bar{\chi}_{(5,4,3,3,3,2,1)}^{O(7)}=-\bar{\chi}_{(5,4,3,3,1,1,1)}^{O(7)}
$$

## Clipping rule for character of $O(N)$ irrep

The Clipping rule for $O(N)$ is more complicated

1. Identify the East Coast labelled by $i-j$
2. Identify the clipping center: $s=r=\lfloor N / 2\rfloor$

3. Identify the clipping patch on the coast
$n_{B}$ : the number of boxes strictly below the center

$$
n_{A}=n_{B}+\frac{1+(-1)^{N}}{2}
$$

the number of boxes east or north from the center
4. Clip and repeat steps

$$
\bar{\chi}_{(5,4,3,3,1,1,1)}^{O(7)}=\bar{\chi}_{(5,4,2)}^{O(7)}=\chi_{(5,4,2)}^{O(7)}
$$



$$
\bar{\chi}_{\lambda}^{O(N)}=(-1)^{n_{\text {rows }}+N} \bar{\chi}_{\lambda_{\text {new }}}^{O(N)}
$$

$$
\rightarrow \bar{\chi}_{(5,4,3,3,3,2,1)}^{O(7)}=-\chi_{(5,4,2)}^{O(7)}
$$

## Outline

1. Motivation: Spectrum degeneracies in $O(N)$ model
2. Specialization rule for character of $O(N)$ irrep
3. Applications to continued partition function
4. Summary and Outlook

## 3. Application to partition function

Following the continuation of the characters, one get the continued partition function.

$$
\bar{Z}=\sum_{\text {all }} \sum_{i=1}^{n(\lambda)} q^{\Delta_{\lambda, i}(N)} \bar{\chi}_{\lambda}^{O(N)}
$$

Specialize at give $N_{0}$,

$$
\left.\bar{Z}\right|_{N=N_{0}}=Z^{\left(N_{0}\right)}
$$

$$
\begin{aligned}
\left.\bar{Z}\right|_{N=N_{0}}= & \sum_{\lambda, l(\lambda) \leq r} \sum_{i=1}^{n^{\prime}(\lambda)} q^{\Delta_{\lambda, i}\left(N_{0}\right)} \bar{\chi}_{\lambda}^{O\left(N_{0}\right)} \\
& +\sum_{\lambda^{0}} \sum_{i=1}^{n\left(\lambda^{0}\right)} q^{\Delta_{\lambda_{0}, i}\left(N_{0}\right)} \bar{\chi}_{\lambda^{0}}^{O\left(N_{0}\right)}+\sum_{\lambda^{+}} \sum_{i=1}^{n\left(\lambda^{+}\right)} q^{\Delta_{\lambda^{+}, i}\left(N_{0}\right)} \bar{\chi}_{\lambda^{+}}^{O\left(N_{0}\right)}+\sum_{\lambda^{-}} \sum_{i=1}^{n\left(\lambda^{-}\right)} q^{\Delta_{\lambda-i}\left(N_{0}\right)} \bar{\chi}_{\lambda^{-}}^{O\left(N_{0}\right)} \\
= & \sum_{\lambda, l(\lambda) \leq r} \chi_{\lambda}^{O\left(N_{0}\right)}\left(\sum_{i=1}^{n^{\prime}(\lambda)} q^{\Delta_{\lambda i,}\left(N_{0}\right)}+\sum_{i=1}^{n\left(\lambda^{+}\right)} q^{\Delta_{\lambda+i}\left(N_{0}\right)}-\sum_{i=1}^{n\left(\lambda^{-}\right)} q^{\Delta_{\lambda-i}\left(N_{0}\right)} \quad \bar{\chi}_{\lambda^{0}}^{O\left(N_{0}\right)}=0, \bar{\chi}_{\lambda^{ \pm}}^{O\left(N_{0}\right)}= \pm \chi_{\lambda^{\prime}}^{O\left(N_{0}\right)}\right.
\end{aligned}
$$

## 3. Application to partition function

$$
\left.\bar{Z}\right|_{N=\left(N_{0}\right)}=\sum_{\lambda, l(\lambda) \leq r} \chi_{\lambda}^{O\left(N_{0}\right)}\left(\sum_{i=1}^{n^{\prime}(\lambda)} q^{\Delta_{\lambda, i}\left(N_{0}\right)}+\sum_{i=1}^{n\left(\lambda^{+}\right)} q^{\Delta_{\lambda^{+}, i}\left(N_{0}\right)}-\sum_{i=1}^{n\left(\lambda^{-}\right)} q^{\Delta_{\lambda^{-, i}}\left(N_{0}\right)}\right)
$$

Compared with $\quad Z^{\left(N_{0}\right)}=\sum_{\lambda, l(\lambda) \leq r} \sum_{i=1}^{n(\lambda)} q^{\Delta_{\lambda, i}\left(N_{0}\right)} \chi_{\lambda}^{O\left(N_{0}\right)}$
1.Direct evanescent operators

Operators with irrep $\lambda^{0} \quad$ Null at $N_{0}$. No contribution to partition function.
2.Pair annihilation evanescent operators

Operators with irrep $\lambda^{-} \quad$ Negative contribution to the partition function.
Must be cancelled. $\quad \Delta_{\lambda^{-}, i}\left(N_{0}\right)=\Delta_{\lambda^{+}, j}\left(N_{0}\right)$ or $\Delta_{\lambda, k}\left(N_{0}\right)$

## 3. Application to partition function

$\Delta_{\lambda-i}\left(N_{0}\right)=\Delta_{\lambda, k}\left(N_{0}\right)$
Henriksson, 2201.09520


| Lorentz irrep | $O(N)$ irrep $\lambda$ | $\Delta(N)$ |
| :--- | :--- | :--- |

()

$$
6-2 \epsilon+\frac{2(N+2)}{N+8} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

()

$$
\begin{equation*}
6-2 \epsilon+\frac{6}{N+8} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \tag{2,2}
\end{equation*}
$$

()
$6-2 \epsilon+\frac{N+4}{N+8} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$
(2)
$(2,2)$

$$
6-2 \epsilon+\frac{14}{3(N+8)} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

(2)
()

$$
6-2 \epsilon+f(N) \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$(2,2)$
$6-2 \epsilon+\frac{14}{3(N+8)} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$
$(1,1)$
(2)
$6-2 \epsilon+g(N) \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$

$$
\begin{equation*}
\bar{\chi}_{(2,2)}^{O(1)}=-\chi_{()}^{O(1)}(x) \tag{1,1}
\end{equation*}
$$

$$
\begin{aligned}
& f(N)=\left(44+9 N-\sqrt{624-8 N+9 N^{2}}\right) /(6(N+8)) \\
& \text { and } f(N=1)=14 / 27=14 /\left.(3(N+8))\right|_{N=1}
\end{aligned}
$$

$g(N)$ is given as the root of a cubic equation, with $g(N=2)=7 / 15=14 /\left.(3(N+8))\right|_{N=2}$

## 3. Application to partition function

One more example

Henriksson, 2201.09520

$$
\text { degeneracy at } N=2
$$

$$
\frac{5}{2}=\frac{4}{N+8}=\frac{N+2}{N+8}
$$

$$
\bar{\chi}_{(2,1,1)}^{O(2)}=-\chi_{()}^{O(2)}(x)
$$

$$
\bar{\chi}_{(1,1)}^{O(2)}=\chi_{()}^{O(2)}(x)
$$

| Lorentz irrep | $O(N)$ irrep $\lambda$ | $\Delta(N)$ |
| :---: | :---: | :---: |
| $(1,1)$ | $(2,1,1)$ | $6-2 \epsilon+\frac{4}{N+8} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$ |
| $(1,1)$ | $(1,1)$ | $6-2 \epsilon+\frac{N+2}{N+8} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$ |

$$
\Delta_{\lambda^{-}, i}\left(N_{0}\right)=\Delta_{\lambda^{+}, j}\left(N_{0}\right)
$$

- Some $\lambda^{+}$operators will remain and contribute to the physics spectrum
- All our examples are leading order results. Interesting to check it to higher order or nonperturbatively.


## Outline

1. Motivation: Spectrum degeneracies in $O(N)$ model
2. Specialization rule for character of $O(N)$ irrep
3. Applications to continued partition function
4. Summary and Outlook

## Summary

- We identify new degeneracies in the energy spectrum $\{\Delta(N)\}$ of theories with a global $O(N)$ symmetry
where $N$ is treated as a continuous parameter, and assuming spectrum continuity
- We also show that these degeneracies originate from the evanescent states of a global $O(N)$ that drops out of the spectrum in pairs

The contributions of two states to the partition function have to cancel, which in turn require to have equal energy
-We illustrate the findings in the $O(N)$ CFT in $d=4-\varepsilon$ and work at leading perturbative order of $\varepsilon$, but we emphasize that the degeneracies in general hold at the non-perturbative level and conformal symmetry is not a requisite.

## Outlook

- a full set of degeneracies in the spectra of the $O(N)$ model
- verification of the degeneracies beyond leading order or non-perturbatively
- Will the degeneracies provide useful input/constraint to the bootstrap program?
- continuation of spinor irrep and degeneracies of fermionic theory
- study of other groups like $\operatorname{sp}(2 N)$
- Are there further hidden symmetry?
- study of $O(N)$ symmetry at non-integer $N$
- study of spacetime evanescent operators under a continuation of the spacetime dimension

Thank you!

