

Ve appearance@nuPRISM

update on the sensitivity studies

Javier Caravaca, Stefania Bordoni, Federico Sánchez, John Vo

Short reminder

• We studied the nuPRISM sensitivity to to sterile neutrinos oscillations (\mathbf{v} e appearance) with the 3+1 model

- The latest results shown an improvement of the nuPRISM sensitivity while considering:
 - a detector of 4m radius (instead of 3m)
 - a shape + rate analysis based on both the reconstructed energy and the off-axis
 - signal events are calculated by re-weighting the ν e background according to the ν_e/ν_μ flux ratio

 nuPRISM can exclude the MiniBooNE allowed region for a 3+1 sterile model

2

reminder: Ve-signal template

- **I.** Select \mathbf{v} e background sample of events by requiring :
 - at least 2m between the reconstructed vertex position and the wall of nuPRISM
 - at least 200MeV of visible energy
 - at least 3.2m distance to the nuPRISM wall in the lepton direction
- 2. Re-weight the ν e background sample to the ν μ flux
- **3.** Apply the 3+1 oscillation probability

Reminder: analysis strategy

- The analysis is done in a 10 Erec \times 10 OAA plane with : Erec = (0.2 GeV, 4 GeV) and OAA = (1.1°, 3.9°)
- Build of a χ^2 estimator for correlated Gaussian distributions with a covariance matrix :

$$\chi^2 = (signal)^T V^{-1} (signal)$$

- the covariance matrix is a linear sum of the statistical and flux and cross-section components
- the signal is a 100 elements vector depending on the oscillation parameters
- The nuPRISM sensitivity is then obtained by computing the value of the χ^2 for each point of the (sin²29, Δ m²) phase space (100 x 100 bins)

What is new today

- Javier defended his thesis (congratulations!). I am taking over from him, ensuring with John and Federico the continuity on this analysis
- We studied the nuPRISM sensitivity considering as oscillation parameters the MiniBooNE best fit point (Erec>200MeV) for anti-neutrinos:

$$(\sin^2 2\theta, \Delta m^2) = (0.0061, 4.42 \text{ eV}^2)$$

- We studied the sensitivity for two cases:
 - vs. reconstructed energy (30 bins)
 - vs. reconstructing energy and off-axis angle (10 x 10 bins)
- We studied the nuPRISM sensitivity with respect to v_e/v_μ ratio (instead of v_e -signal only) to reduce the effects due to the systematics

The results presented in the following slides are for an exposure of 4.6 10²⁰ POT

Study of the NuPRISM sensitivity considering oscillations at the MiniBooNE best fit point

NuPRISM sensitivity with MB input

- We consider oscillations for $\sin^2 2\theta = 0.0066$ and $\Delta m^2 = 4.42$ eV² (MiniBooNE best fit point)
- 30 bins in Erec (0.2 GeV, 4 GeV)
- Confidence intervals drawn for several levels (90%CL, 3 σ , 99.9%CL, 4 σ)

NuPRISM sensitivity with MB input

- We consider oscillations for $\sin^2 2\theta = 0.0066$ and $\Delta m^2 = 4.42$ eV² (MiniBooNE best fit point)
- 10 bins in Erec (0.2 GeV, 4 GeV) and 10 bins in OAA (1.1°, 3.9°)
- Confidence intervals drawn for several levels (90%CL, 3 σ , 99.9%CL, 4 σ)

Study of the nuPRISM sensitivity considering ν_{e}/ν_{μ} ratio

Covariance matrix

- In parallel to the v_e background template we select a v_μ template using criteria very closed to the ones applied to the v_e :
 - at least 1m between the reconstructed vertex position and the wall of nuPRISM
 - at least 30MeV of visible energy
 - at least 2.0m distance to the nuPRISM wall in the lepton direction
 - at least 200MeV in momentum
- Analysis performed for I0 Erec x I0 OOA bins
- Build of a χ^2 estimator for correlated Gaussian distributions, with a covariance matrix :

$$\chi^2 = (\frac{signal}{\nu_{\mu}})^T V^{-1} (\frac{signal}{\nu_{\mu}})$$

- \bullet V (stat) is the statistical error of (signal+bkg)/ $\!\nu_{\scriptscriptstyle \mu}$
- The nuPRISM sensitivity is then obtained by computing the value of the χ^2 for each point of the (sin²29, Δ m²) phase space (100 x 100 bins)

Total covariance matrix (3m)

10⁻²

10⁻³

nuPRISM radius 3m

10⁻²

ν_e signal alone (EoI results)

Stefania Bordoni (IFAE)

 $10^{-1} \sin^2(2\theta)$

nuPRISM radius 4m

Ve signal alone (EoI results)

Conclusions

- ullet The results on the nuPRISM sensitivity to the $ullet_e$ appearance previously presented and included in the EoI are promising
 - considering a 3m (4m) radius nuPRISM can quasi-totally (totally) exclude the MiniBooNE allowed region
- We considered the case of short baseline oscillations with oscillation parameters closed to the MiniBooNE best fit point. In that case nuPRISM would be able to **reject** the **non-oscillation hypothesis** at 4σ
- The analysis as a function of the V_e/V_μ ratio have been implemented
 - Preliminary results for the nuPRISM sensitivity have been presented performing the analysis with 10Erec x 10 oaa bins for both the cases of a 3m or 4m detector radius
 - The impact due to the flux systematics is reduced. Smaller reduction are observed for the cross-section systematics

• We would like to have a publication from these results. How to proceed?

backup

Ve signal alone (Eol results)

ν_e/ν_μ ratio

