Ve at vPRISM

Appearance Needs

- Understand CC0 π ν_e/ν_μ cross section ratios
- Model oscillation appearance signal and intrinsic background with vPRISM v_{μ}

Coefficient Fits

- Fit vPRISM intrinsic v_e peak with the vPRISM v_μ
- Try with and without smoothing
- Hard to get peak quite right
- Falloff is strong at 1.25 GeV

Coefficient Fits

- With stronger
 smoothing the fit
 gets less good
- Previous slide,
 smoothing of 0.1,
 this slide, 0.01

Method for Ve/V_µ

In each bin of p- θ :

$$\frac{N_{selec}^{\nu_e} - B_{MC}^{\nu_e}}{\epsilon_{CC0\pi}^{\nu_e}} = \rho \sum_{i} C_i \frac{N_{selec}^{\nu_{\mu}} - B_{MC}^{\nu_{\mu}}}{\epsilon_{CC0\pi}^{\nu_{\mu}}}$$

Number of CC0π V_e

Number of CC0 $\pi \nu_{\mu}$

N^{ve} Selected

43% of selected v_e are $CC0\pi$

Imperial College London

6

N^{ve} Background

Using the whole detector seems best!

Flux Fits to SK Ve

Future Work

- Have investigated varying NC by 30%—seems ok, but I don't want to show plots because I haven't thoroughly checked
- Vary flux systematics, other cross section systematics
- Look at using NC sample for background removal
- Start looking at oscillation predictions

