

$\nu \text{PRISM} \; \nu_{_{\mu}} \; \text{disappearance analysis}$

Mark Scott 2nd vPRISM workshop July 23nd 2014

Flux fit

• Use vPRISM technique (linear combinations) to create the SK neutrino flux assuming a given set of oscillation parameters

• Provides a set of weights for the different off-axis slices of vPRISM

SK prediction

- Apply these weights to the selected events in each off-axis slice of $\nu PRISM$
- Now looking at reconstructed neutrino energy events smeared into oscillation dip by nuclear effects and energy resolution

- To vPRISM data:
 - Background subtraction
 - Efficiency correction
 - Addition of selected SK background
- Introduce some model dependence

Add multi-nucleon events to the nominal MC to make fake data

 See vPRISM prediction still reproduces oscillated SK spectrum when multi-nucleon events are present

Look at effect of adding MEC events to 300 fake data sets

- Much smaller RMS in $\theta_{_{23}}$ (left) and Δm^2 (right) than in T2K analysis
- No bias seen in θ_{23} plot
- The vPRISM concept is working!

Next steps

- Need to move to full detector MC and reconstruction –
 See Carl's talk later today
- Perform oscillation fit in muon p-theta
- Use increased MC stats T2K/HK sensitivity?
- Interpolate likelihood surface to find minimum resolution not limited by discrete binning of histogram
- Can we improve the flux coefficient fit?
 - Better fit → less model dependent and smaller xsec systematics
 - Balance against statistical uncertainty
- How do detector systematics screw things up?

Flux coefficient fit

Currently smooth neighbouring coefficients:

$$\Delta \chi^2 = \left(\frac{C_i - C_{i+1}}{0.001}\right)^2$$

• Gives 7% uncertainty in SK prediction in oscillation dip

Can we do better?

Apply more smoothing around oscillation dip (2.5

degrees off-axis)

$$\Delta \chi^2 = \left(\frac{C_i - C_{i+1}}{0.05 \cdot (|(o.a.a. - 2.5)| + 0.1)} \right)^2$$

New fit on left, old, smooth fit on right

Can we do better?

- Apply more smoothing around oscillation dip (2.5 degrees off-axis)
- New fit on left, old, smooth fit on right

Effect on statistical error

- Look at the statistical variance from both fits when applied to smaller sample of nuPRISM data
- New fit on left, old, smooth fit on right

New fit has substantially larger variance – Z axis

Why did the uncertainty increase?

- New coefficients are larger?
- Coefficients are less smooth?
- This particular fit?

Coefficient size

- Apply no smoothing function
- Large penalty term if absolute value of any coefficient > 0.023

Still not as good as nominal – larger error + worse flux fit

Coefficients smoothness

- Apply strong smoothing if coefficient is < 0.01
- Coefficients smooth over most angles, but a couple of big jumps

 One or two discontinuities greatly increases stats error – 0.14 c.f. 0.05 in nominal fit

Coefficients smoothness 2 **WIRIUMF**

- Apply very strong smoothing for all coefficients
- Flux fit does get worse

'Smoothness' is crucial to reduce statistical uncertainty

E, (GeV)

Failed attempts...

- Tried a number of different smoothing functions to try and improve fit while retaining small statistical uncertainty
 - Small coefficients with smoothing
 - Let more on-axis slices vary more than off-axis slices (more events)
 - Only smooth negative coefficients
 - Smooth coefficients around 2.5 degrees
 - Fit 60 slices, rather than 30
 - Fit 10MeV bins in neutrino energy, rather than 50MeV bins
- All gave minor improvements in the flux fit but with significant increases in statistical uncertainty

Best attempt

- Fit 60 slices
- Penalty term for coefficients above 0.02
- Slightly relaxed smoothing term (denom: 0.001 → 0.003)
- Fit out to 1.5 GeV, not 2 GeV in neutrino energy

Best attempt

- Fit 60 slices
- Penalty term for coefficients above 0.02
- Slightly relaxed smoothing term (denom: 0.001 → 0.003)
- Fit out to 1.5 GeV, not 2 GeV in neutrino energy

- Still gives larger statistical error
- Maybe some room for improvement still
- Don't expect much though!

Detector systematics

- Change to a happier topic detector systematics
- Have started writing new package to apply detector systematic variations:
 - Vertex position bias not studied yet, very similar to off-axis shift that is already included
 - Vertex position resolution
 - Varying detection efficiency as a function of depth
 - Varying momentum bias with depth
- Applied to reconstructed event can calculate covariance matrix in same way as for flux and xsec systematics

Vertex resolution

- Randomly move reconstructed vertex position
 - Distance moved is a random draw from a Gaussian with a set width (30cm)
 - Theta-Phi randomly determined

Efficiency gradient

- Vary selection efficiency linearly as a function of depth
 - 100% efficient at top, 95% efficient at bottom
 - Surprisingly small effect

Momentum bias

- · Based on work by R. Tacik -
- http://www.t2k.org/ndup/nuprism/meetings/20140319/water

- Investigated effect of water quality on SK reconstruction
- Found no effect in vertex resolution
- Negative bias in measured muon momentum, up to 12%

Momentum bias

- Linear momentum bias as a function of depth:
 - Nominal momentum at top, 93% of measured value at bottom

 Big effect, ~15% maximum uncertainty and anti-correlations in energy bins

Systematics summary

- Package exists to apply systematics will commit soon
- Initial studies show that vertex resolution will not be a problem
 - Bias' in vertex position might be though
- If a selection efficiency difference exists as a function of depth this is probably OK too
- A changing momentum bias will cause difficulties:
 - Need to check whether this is due to the bias, or the fact it changes with depth
 - Does this bias effect the oscillation parameters we extract?
- Need to perform some cross checks to make sure systematics are being applied correctly
- What other systematics should be considered?

Summary summary

- The disappearance analysis has demonstrated that the vPRISM concept works
 - Multi-nucleon events do not affect the measurement of oscillation parameters
- The flux coefficient fit will be hard to improve further without sacrificing statistical uncertainty
 - Maybe there are clever ways of combining slices
 - Fourier methods used in astronomy
- First studies of detector systematics show that sources of momentum bias must be controlled, though vertex resolution is less important

Backup slides

vPRISM Design

Baseline design used in the oscillation studies

- 3m radius inner detector
- 52.5m tall spanning 1-4 degrees off axis
- 1km from neutrino target
- vPRISM-lite:
 - Instrument 14m movable cylinder
 - Take data at different off-axis angles over run
 - Studies assumes 4.5 x 10^{20} POT in each off-axis slice of vPRISM

Building the oscillated flux

- All based on simulated neutrino flux at SK and vPRISM
- Slice vPRISM into 30 slices of 0.1 degree assign each a weight

• MINUIT χ^2 fit between sum of weighted $\nu PRISM$ slices and oscillated

Building the oscillated flux

Perform fit for all combinations of oscillation parameters used in the

Event Selection

- Same event selection as at SK:
 - Single ring
 - Muon-like
 - Fully contained in fiducial volume

 Record the off-axis angle of the interaction, using the reconstructed vertex position

Systematic uncertainties

- Every correction made to the vPRISM prediction is calculated from our nominal MC – all are constant corrections
- To calculate systematic uncertainties:
 - Apply a variation to the vPRISM and SK MC
 - Changes number of selected events at both detectors
 - Apply corrections (from the unvaried, nominal MC)
 - Calculate change in the vPRISM prediction
 - Use this to calculate fractional covariance matrix for vPRISM prediction
- This analysis takes flux and cross section uncertainties into account
 - Conservative detector systematics see later slides

 Total uncertainty on the predicted event spectrum at SK, including statistical and systematic sources

- Total uncertainty is <10% at oscillation peak
- ~7% statistical, 6% systematic

Oscillation fit

• Calculate covariance matrix and ν PRISM prediction for various points in θ_{23} and Δm^2 phase space

- Use Simple Fitter to calculate likelihood (L)
- Plot ln(L) for all points in θ_{23} and Δm^2
- Minimum bin gives best fit oscillation parameters

Additive correction

- Final step additive correction
- Subtract selected SK spectrum from vPRISM prediction
- Add this difference to the vPRISM prediction
- If our MC exactly reproduces nature, $\nu PRISM$ prediction will exactly match selected SK spectrum

vPRISM corrections

- Every correction made to the vPRISM prediction is calculated from our nominal MC – all are constant corrections
- These corrections potentially introduce model dependence
- To calculate systematic uncertainties:
 - Apply a variation to the vPRISM and SK MC
 - Changes number of selected events at both detectors
 - Apply corrections (from the unvaried, nominal MC)
 - Calculate difference between selected SK events and vPRISM prediction
 - Use this to calculate fractional covariance matrix for vPRISM prediction

Flux uncertainty

- Flux uncertainties come from 26 sources
 - Proton beam alignment
 - Hadron production
 - Etc.
 - Expect to be independent of one another
- Can calculate a flux covariance matrix in two ways:
 - From each source separately, then combine in quadrature
 - Apply variation from each source at the same time and calculate a covariance for the entire flux uncertainty in one step
- These should give the same answer

Separate sources

 Oscillation analysis performed using 12 uneven bins in reconstructed neutrino energy – the 8 shown cover 0 – 3 GeV

Source by source flux covariance 8 bin 0.0055 0.0049 0.0041 0.0029 0.0020 0.0019 0.0020 0.0037 Reconstructed E_v 0.005 0.0032 0.0026 0.0037 0.0021 0.0022 0.0023 0.0025 0.0031 0.0045 6 0.0018 0.0015 0.0015 0.0023 0.0027 0.0031 0.0025 0.0020 0.004 5 0.0016 0.0025 0.0019 0.0014 0.0022 0.0027 0.0023 0.0035 4 0.003 0.0013 0.0014 0.0022 0.0022 0.0023 0.0022 0.0020 3 0.0025 0.0026 0.0021 0.0017 0.0014 0.0014 0.0015 0.0021 0.0029 0.002 0.0046 0.0039 0.0021 0.0015 0.0026 0.0041 0.0015 0.0055 0.0046 0.0026 0.0013 0.0016 0.0018 0.0032 0.0049 0 0 2 3 5 4 Reconstructed E, bin

Simultaneous variation

- Larger errors at high and low energy no vPRISM events
- Error at oscillation dip (bin 3) around 5%

Comparing flux uncertainty

Source by source matrix on left, simultaneous matrix on right

- Very good agreement between the two methods
- Confident flux uncertainties are being applied correctly

Flux and cross section

 When varying flux and cross section simultaneously the uncertainty in bin 3 (600 – 700 MeV) is 5.7%

Joint flux and cross-section covariance matrix

Systematic throws

Look at fake data throws of both flux and cross section uncertainties

- Plots show all 300 throws of the $\nu PRISM$ prediction (left) and selected SK events (right)
- vPRISM very few events at low or high energy, little variation
- In oscillation region variations similar at SK and vPRISM
- Spectra are ~Gaussian distributed about the central value

Systematic throws

Plot difference between selected SK events and ν PRISM prediction for each throw

- Most of spectrum shows less than 0.5 event difference between SK and $\nu PRISM$ prediction
- Systematic uncertainties are cancelling between the two detectors

- Potential to be large due to linear combination
- Original error matrix on right
 - almost 100% uncertainty

10

- Potential to be large due to linear combination
- Original error matrix on right
 - almost 100% uncertainty

- Fit coefficients:
 - Rapidly varying
 - Relatively large

Smooth linear combination – variations in neighbouring slices

cancel out to large extent

 Smooth linear combination – variations in neighbouring slices cancel out to large extent

Flux uncertainty

- Flux uncertainties calculated in same ways as for T2K, evaluated at 1km
- Fractional error on left, correlation matrix on right

- Larger errors at high energy no vPRISM events
- Error at oscillation dip around 4-5%

Flux and XSec uncertainty

- Xsec uncertainties should largely cancel at $\nu PRISM$ amount of cancellation depends on how well flux combination matches SK flux
- Need to throw flux and cross section uncertainties together

 Combined flux and cross section uncertainty around 5% at the oscillation dip

- Potential to be large due to linear combination
- Smooth linear combination variations in neighbouring slices cancel out to large extent

Nieves' result

 Look at the difference in best fit oscillation parameters between the nominal MC and the MC with additional Nieves MEC events

- Much smaller RMS in $\theta_{_{23}}$ (left) and Δm^2 (right) than in T2K analysis
- Large spike at 0 difference in both plots