vPRISM Status and Plans

Mike Wilking 2nd vPRISM Workshop 23-July-2014

Goals from Previous Workshop

- Complete T2K v_{μ} disappearance analysis
- Sterile neutrino sensitivities
- Detector simulation and reconstruction
- Preliminary detector design
 - PMTs, frame, electronics, calibration systems, scintillator panels, water system
- More information / bids on civil construction
- nuPRISM EOI for T2K

vprism vµ Disappearance Bias

vPRISM Analysis

- nuPRISM works!
 - Using conservative systematics
 - Without using any information from ND280
- Next steps include realistic reconstruction, p/theta-only analysis, and incorporating a more sophisticated fitter

Sterile Neutrinos

- Based on half the total T2K statistics (expected after beam upgrade)
- Conservative estimates
 - MiniBooNE-style v_e+v_μ fit not yet used (strong flux correlations)
 - ND280 not yet used (2 detector fit can add significant sensitivity)
- Need to implement more information to make further improvements (see Stefania's talk)

Detector Simulation and Reconstruction

- Working set of code based on WCSim and fiTQun
- Some work still needed: clear biases seen in reconstructed momentum
 - ~13% for muons, ~10% for electrons
- Muon resolution is already at Super-K fiTQun levels
- fiTQun still needs to be tuned to WCSim optical model
 - Same issues seen in Hyper-K reconstruction
 - Work in progress at Winnipeg and Stony Brook; ~1 month until ready

Particle ID

- PID works well out of the box
 - At 500 MeV/c, the standard fiTQun PID cut is at 100
- Some events are getting close to the cut line
 - Will be improved once momentum reconstruction is improved

Detector Design

- Initial proposal for ID/OD frame and lifting mechanism has been produced
 - Careful consideration given to water flow rate while in motion
- Need to complete an initial design and incorporate scintillator panels

Civil Construction

- In total: 600百万円 = 6億円+alpha
- Assumption
 - 1. Soil condition is assumed to be the same as at 2km
 - 2. Hall size: 10m-Φ×50m-D, ILM+NATM
 - 3. Shotcrete (150mm) + (waterproof sheet) + Lining concrete (600mm) + **3mm HDPE lining** (maximum thickness in use) cf. spec at Hyper-K: 5~10mm
 - 4. ...
- Company requests more information about the detector construction and related facilities. We need to expect +alpha
- 9 months of construction period in total.
 - 2 months for preparation + 7 months for construction

Slide from
Ishida-san
at T2K
vPRISM
premeeting

- Digging pit + liner may be much cheaper than or original estimates
- Need to firm up these estimates as best we can and incorporate this information into the proposal
 - Final cost estimate will require geological survey after the final decision is made on the detector location

The EOI Document

- Original goal was to release this at the previous T2K collaboration meeting
 - Results were not stable enough to provide a useful document
- Main results have now been ready for ~1 month
- New interesting and useful results have been added in the past few weeks
 - e.g. new flux fits to demonstrate how the nuPRISM technique can be used in ν_e and anti- ν analyses
- Proposal: freeze the document with the currently available results and release in the next week
 - Continue to update as necessary, and issue new versions, if required
- We will be working toward a full proposal this year, so frequent updates of the technote will not be necessary or desired

Toward a Full Proposal

- For reference, the original T2K 2 km proposal can be found here:
 - http://www.phy.duke.edu/~cwalter/nusag-members/
- 2 km proposal describes, in general terms, a water Cherenkov detector
 - Usefulness for T2K analyses is qualitatively assumed
- Our task is more difficult
 - vPRISM technique is more subtle, and its justification is to significantly reduce systematic errors
 - Quantitative demonstration that this detector will achieve such small uncertainties is required

Proposal Goals

- nuPRISM is driven by measurement capabilities, so complete analyses are required
 - v_{μ} disappearance analysis (Mark S.'s talk)
 - Initial version finished, but improvements are needed
 - ve appearance analysis (Asher's talk)
 - Anti-v analyses (Leila's talk)
 - Sterile neutrino analysis (Stefania's talk)
 - Cross section physics (Kendall's talk)

Carl's and Mark S.'s Talks

- Requires realistic detector simulation/reconstruction, detector systematic errors, etc.
- Must decide on a plausible baseline detector design

- Tank size (length: off-axis angle range; width: electron and muon efficiency & purity)
- PMT size and photocathode coverage
 - Will dictate the required/allowed electronics (Thomas' and Marcin's talks)
 - Must maintain synergy with Hyper-K R&D, if possible
- Integration of all detector systems (e.g. including scintillator panels as an OD reflector)
- Detector calibration requirements, and corresponding systems, are essential!
- As much information regarding civil construction as possible (without yet acquiring site)

 Ishida-san's Talk

Electron-like Measurements

- MiniBooNE sees a large excess of electronlike events from?
 - NCπ⁰
 - Single-γ production
 - External γ
 - Beam v_e
 - muon misID
 - sterile neutrinos
- This must be understood for a precision CP violation measurement
- Linear combination of v_{μ} fluxes can be used to reproduce **BOTH:**
 - The SK v_e signal+background
 - Direct measurement of far detector v_e response (excluding $\sigma(v_e)/\sigma(v_\mu)$ uncertainty)
 - The $vPRISM v_e$ flux
 - This will allow direct comparison of v_{μ} and v_{e} double-differential xsec

ve Event Selection

- ν_e 's are more sensitive to the tank diameter than ν_μ 's
- Large v_µ background requires good PID
 - PID degrades as particles approach the tank wall
- 6m diameter may be too small
 - 8m diameter is also being investigated
 - (with 10m 0D diameter kept fixed)

Om

Tank Diameter
Strongly Impacts
ve Fiducial Volume

Hyper-K Prototype Detector

- Hyper-K will require a prototype detector
 - EGADs is small and is a currently running experiment
 - K2K 1kton detector needs significant refurbishment, and will not provide useful physics
 - nuPRISM-Lite mentioned as a possibility
- Current proposed timescale is too tight for prototype testing to begin in nuPRISM-Lite
 - Instead, we need a plan to relocate PMTs and electronics to nuPRISM once the detector is available
- Ultimately, nuPRISM-Lite will depend on J-PARC/KEK agreeing to the civil construction
 - Many other components can be acquired using existing HK R&D money
 - May be possible to reuse old PMTs from MiniBooNE or Daya Bay

Site

- I'd like to propose to use EGADS 200ton tank as a baseline option
 - we have to keep EGADS functionality;
 Improvements to the detector is welcomed as long as downtime is minimized
 - Case study talk by Yano-san today
- IKT tank at KEK
 - may need inspection of the old facility, at least need refurbishment of the rusted tank, water system has been removed
- Interests in a near detector at ~Ikm in Tokai
 - near detector should be approved and budget should be secured in a timely manner

Timeline Proposal 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 Deteçtor Cavity excavation **Operation** Survey, Detailed design Access tunnels Tank construction Photo-sensor development Photo-sensor production sensor installation Prototype (Detecto Photo-sensor production Electronics product 2015~16 Electronics prod. 2016 Photo-sensor prod. (Japan&US?) Grant in-Aid (Japan) 2017 Installation 2017~ Operation

Timescales

- If built for T2K, plans will need to be finalized quickly
 - Aim to begin data taking in 2019
 - To take significant data with upgraded T2K beam
 - Construction would begin in 2016
- Detailed detector design
 - Frame, moving mechanism
 - Field cancelation coils
- Calibration systems
- Water system
 - Circulation scheme, temperature control
- Electronics prototyping
- PMT production lead time
- •

•

We will soon need our own project flow chart

Summary

- Much has been accomplished in a very short time!
 - Only 4 months since the last workshop
 - Complete demonstration of nuPRISM technique in a T2K oscillation analysis
 - Data-driven nuPRISM constraint works!
 - Many details regarding civil construction, detector design, electronics and PMTs are already available
- Timescales are tight for a nuPRISM upgrade for T2K
 - Still a possibility if we can gain approval in the next 1-2 years
 - Regardless, these studies will be useful for future oscillation experiments
- Next step is a full nuPRISM proposal
 - Need to completed all physics analysis studies
- Let's complete the first nuPRISM proposal this fall!