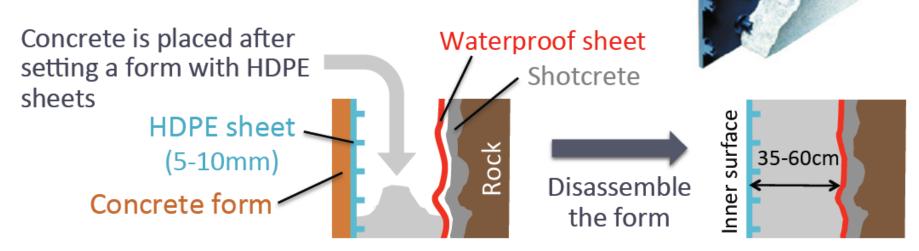


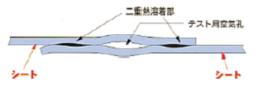
Civil construction status

Hide-Kazu Tanaka (ICRR) T.Ishida (J-PARC/KEK) July 23, 2014

Outline and my appologies..


- This talk is mostly based on materials for following presentations in the past, and no updates.
 - H.K.Tanaka, presentation at 1st WS at IPMU http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=33
 - H.K.Tanaka, updates at an EVO m, Apr.02 http://www.t2k.org/ndup/nuprism/meetings/20140402
 - T.Ishida, presentation at premeeting Apr.16 http://www.t2k.org/ndup/nuprism/meetings/20140416premeeting
- Estimates from a general construction company (A)
 + a heavy industrial company (B)
 - Working for Hyper-K's construction estimates.
- A rough estimate from another general construction company (C)
 - Based on 2km detector construction estimates during 2001~2004.
- I have re-visited materials from these companies in detail before making further progress.

KEK



Tank Lining (Reminder)

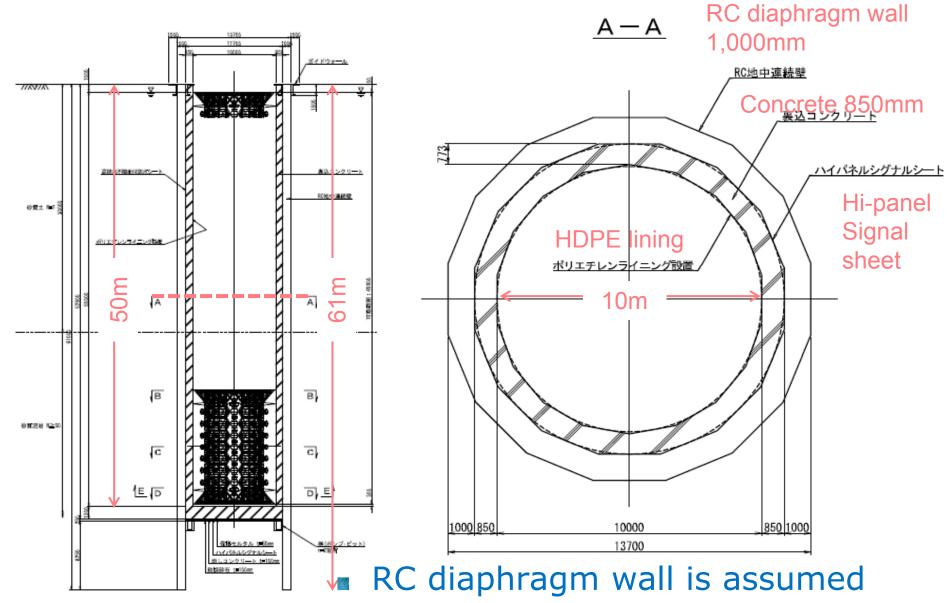
Tank lining consists of concrete and High Density Polyethylene (HDPE) sheet linings

- Water permeability of HDPE sheet is very low
- Adjacent HDPE sheets are welded by heating
- Holes in a sheet (including welded part) can be found by pinhole test

Estimates for different construction methods: company (A)

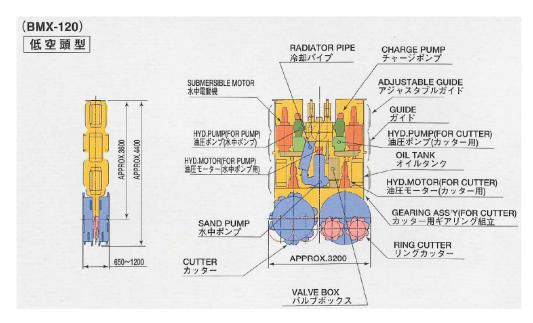
T. Ishida J-PARC KEK

(Unit: Oku JPY; ~Million USD)						
Method	PC	SMW	NAT	UR	RC	
Survey	0.1 (L=70m)					
Designing			0.15			
Land prep.			0.15			
50m deep (construction time)	7.7 (Iyear)	5.9+ (Iyear)	5.3+ (Iyear)	7.5 (1year)	7.5 (Iyear)	
80m deep (construction time)	Not applicable	Not applicable	Not applicable	Not applicable	12 (1.5year)	

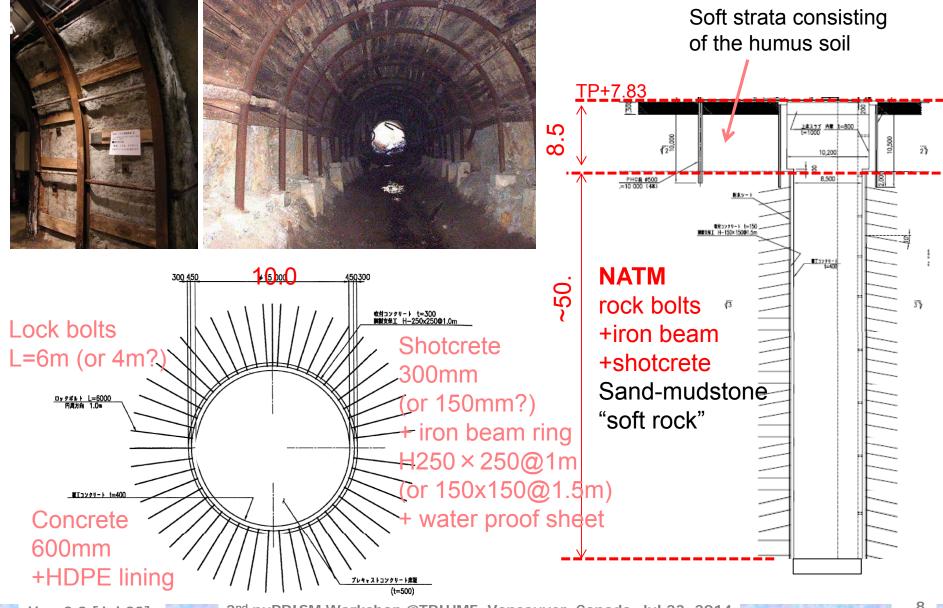

Cheapest

Recommended

Pneumatic Caisson, Soil Mixing Wall, New Austrian Tunneling, Urban Ring, RC cast insitu diaphragm wall


Drawing by heavy industrial company (B)

Cast-in-site diaphragm wall method

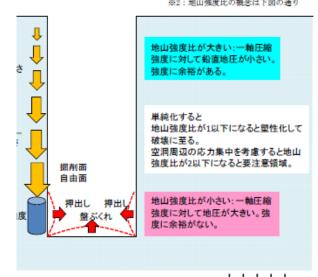


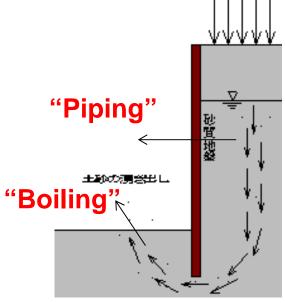
K2K ND / T2K ND280 halls

② 掘 削 ③ スライム処理・良液置換 4 超音波孔量刻定 8 コンクリート打設 ③ コンクリート打設完了 50ミクローラクレーン 50 t クローラクレーン MRD捆削槽 MRD掘削槽 ミキサー車 超音波孔壁測定機 安定液供給ライン 安定液供給ライン 安定液回収ライン 安定液回収ポンプ BMX120探前機 BMX120批削機

NATM: New Austrian Tunneling Method estimate by Company (C)

Ranges of estimates


Civil Construction	Concrete+ HDPE Lining	PMT Support structure etc	Total
(A) 5.3+ α [NATM] 7.5 [RC wall]	(B) : (5.9) [RC wall]	3.1	(14.3)+α
(C) 6+ α [NATM]		?	


- (A): hall construction by NATM RC...
- (B): 850mm-thick concrete + HDPE lining + PMT support
 - assuming RC diaphragm wall of 1m thick exists in prior
- (C) includes HDPE lining as a part of civil construction

What is the factor α for NATM ?

- NATM: after digging each ~1m, iron beam structure + shot-crete + lockbolts to support wall are constructed.
 - During the digging process, side wall and bottom plane should stand by themselves.
- However, boring data@2km show:
 - Sand-mudstone is classified as "soft-rock", not strong enough (ex. compress strength: 2271kN/m2 = 22.7atm
 - Water level under the ground is high.
 - The volcanic ash layers of several meter-thick with soft- coarse grains exist in the sandmudstone, which are washed away easily by running underground water.
 - Sand-mudstone zone has lot of horizontal cracks and ones with 50~60 degree of tilting.
 - Total hydraulic head is higher for deeper sites, so upwelling may exist.
 - (Soft organic quality soil is distributed on thickness more than 5m near the surface.)

(E)

Horrible example:

Soil Mixing Wall (SMW) at TS 2007/02/23

2007/03/01

- Underground water came out and never stopped!
- Similar situation can easily happen for NATM hall

Other methods by company (A)

T. Ishida **J-PARC** KEK

NATM

Pneumatic Caisson

Soil Mixing Wall

Urban Ring

RC cast in-situ diaphragm wall

	элэгр ги энэ ги энг			
山岳工法 (NATM)	ニューマチックケーソン	改良土止水山留(SMW・CSM)	アーバンリング	地中連続壁(RC 連続壁)
山岳トンネルと同様に、1 掘進長分 (1m) 掘削した後、円形鋼製支保工・吹 付けコンクリート・ロックボルトで支保 する。 掘削時の壁面と底面は、押えの無い自 由面となるため、支保を施工するまで自 立している必要がある。 掘削時に側壁・底面からの湧水を止め るのは困難で、土砂流出がある場合は事 前に薬液注入などの補助工法が必要。	鉄筋コンクリートの円柱の下端部に気 密性の梱削作業スペースを作り、圧気をか けて地下水の侵入を防ぎながら、円柱下端 の刃先を掘削して全体を自重で沈下させ る。 沈下した分だけ、地上で円柱を継ぎ足し、 これを繰り返して所定の深度まで沈下さ せる。	オーガーからセメントミルクを噴射しながら、現地の土砂を撹拌して、改良土による止水留壁を造る。強度を確保するため、芯材として、鋼材 (H鋼 or I ビーム)を挿入する。 堀削しながら 1m ごとに円形の鋼製支保工 (リング支保工) を芯材のH鋼内面に接続させて支保する。	プレキャストコンクリート or 鋼製セグメントを、ジャッキで地盤中に圧入しながら内部を水中掘削する。 旋回式の機械掘削は実績では直径 5m 程度まで。それより大口径では、バケットによる水中掘削になる。	掘削泥水で坑壁の崩壊を防ぎながら、1 エレメント幅 Im 程度長さ 2~3m の矩形の掘 削を行い、かご状に組んだ鉄筋を吊降した 後、水中コンクリートを打設し、地中に鉄 筋コンクリートの壁を造る。 このエレメントをいくつも並べて、連続し た山留壁を構築する。
	NAME OF THE PARTY	CRAMM CERAM CCILLORS CRAMPORE	第一点とは中国 第一点とは中国 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。 第一点を表現します。	
地山条件による	70m max	45/65mm: 65m	70m	140m
△ 地山強度比が小さい。 補助工法の費用が予測1.難い.	○ 必要梱削径が大きくなる可能性あり	止水性が不確実。	○ 実績では深度 70m が最大	・ 止水山留壁の品質が高い。 深度 80m の立
5.3 5.3M+α	7.7M D	$\sqrt{5.9M+\alpha}$	7.ŧ 7.5M	7.5M)
(地山強度比が1に接近)	適用不可	適用不可	適用不可	12M)

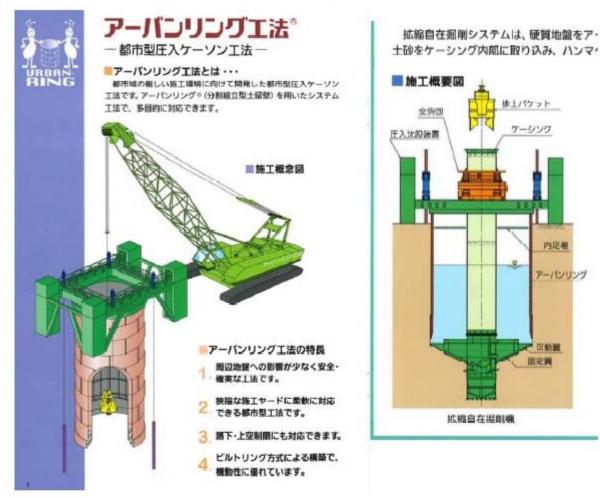
Soil is weak. Supplementary method $(+\alpha)$ is hard to estimate

Radius will Be large.

Δ

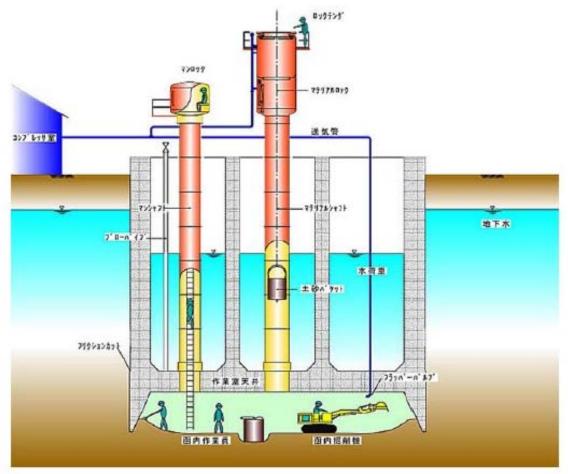
Hard to stop water

XTS had



Water to be Stopped

アーバンリング

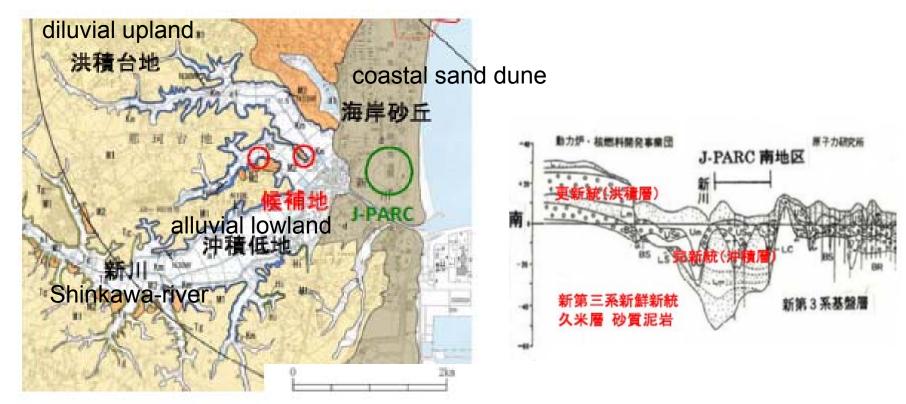

Urban Ring

- Pre-cast concretes (metal segment) are indented into soil by jacks, inside soil was digged out in water
- Pre-cast concrete can be used as main body of the hall.

Pneumatic Caisson

- Air-tight digging space under reinforced concrete structure. The digging space filled with pressure (~7atm)
- Structure will sink by its own weight.
- Diameter will become large

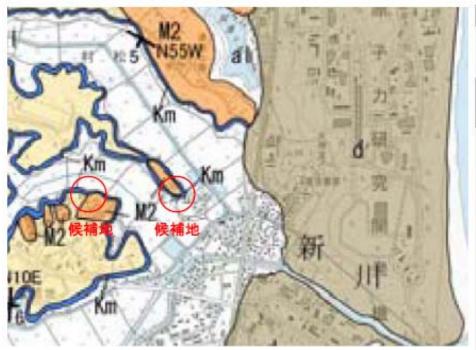
 Ver. 2.0 [Jul.23]

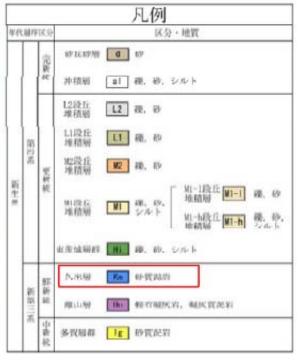

 Ver. 2.0 [Jul.23]

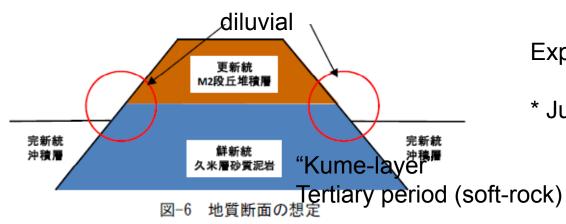
 Ver. 2.0 [Jul.23]

 Ver. 2.0 [Jul.23]

Geology of Tokai

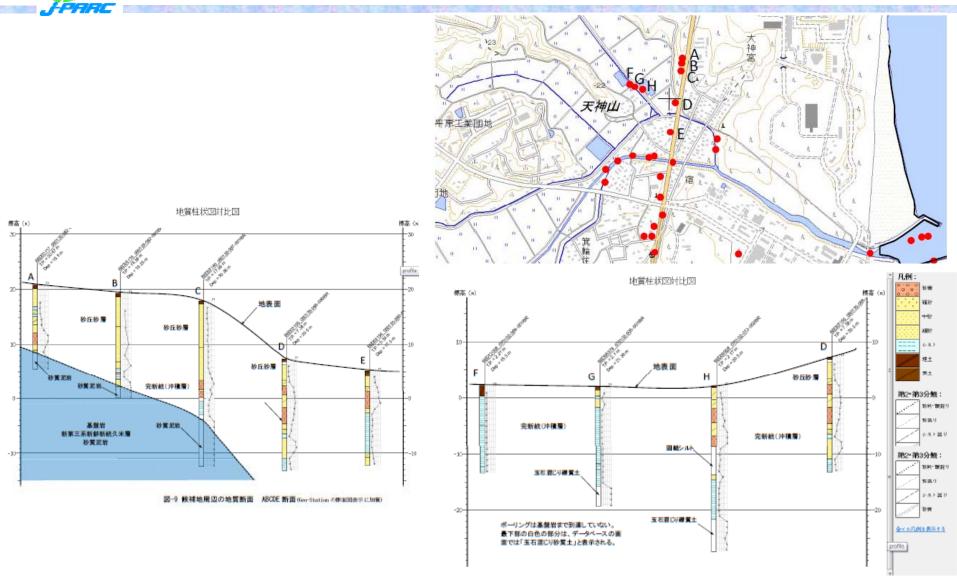



- In the last glacial age $(70,000 \sim 10,000 \text{ years ago})$, sea level was -120m lower than now. Deep valleys were made on basement rock (tertiary period, sand-mudstone, 久米層)+diluvial uplands
- After the age, the Japanese archipelago experienced a rise in the sea level of over 100 meters during Jomon period(~10,000 years ago). 2~3m higher than now. The alluvial lowland was made at that period.


Soil quality expectation at **1.2km**

T. Ishida J-PARC KEK

Quaternary tertiary period



Expected cross section at 1.2km

* Just-on-place boring data needed

Existing boring data

Summary

- Rough cost estimate to make $10m-\Phi \times 50m-D$ nuPRISM baseline design hall at 2km site (or similar soil condition): 6MUSD+a, with 3mm thick HDPE lining, based on New Austrian Tunneling Method, 9 month in total for construction.
- However, due to the high underground water level and soft rock condition observed a boring data at 2km cite, it is hard to anticipate/estimate additional cost "a" for this method.
- Condition of soil/water is so different from that of HK, so it is not certain whether HDPE for nuPRISM can work as HK's const. test.
- Urban ring method (Konaka-san suggested) or RC diaphragm wall look safer than NATM because of better water stopping capability.
- More discussions are necessary with expert companies.
- Detailed spec of HK lining is needed for further estimation by (C).
- For 1.2km site, soft-rock layer of tertiary period appears on surface, and no soft strata exists. It may be better condition for construction work than 2km cite.
- Just-on-place boring data are needed for 1.2 km.