vPRISM Linear Combination Fits

Mark Hartz Kavli IPMU (WPI), University of Tokyo

Linear Combination Review

 The way we are currently using nuPRISM is to reproduce a flux for which we want to measure final state observables with a linear combination of the nuPRISM off-axis fluxes

$$\Phi^{meas}(E_{\nu}) = \sum_{i=1}^{N_{OA}} c_i \Phi_i^{\nu P}(E_{\nu})$$

 In the case of the disappearance analysis, the linear combination reproduces the surviving numu flux at SK:

$$\Phi_{\nu_{\mu}}^{SK}(E_{\nu})P_{\nu_{\mu}\rightarrow\nu_{\mu}}(E_{\nu}|\Delta m^{2},\theta) = \sum_{i=1}^{N_{OA}} c_{i}(\Delta m^{2},\theta)\Phi_{i}^{\nu P}(E_{\nu})$$

Linear Combination for RHC Neutrino Background

- There are additional linear combinations we may want to make:
- For the antineutrino mode (RHC) nuPRISM analysis we can model the wrong sign neutrino flux with the right sign neutrino flux from neutrino mode (FHC):

$$\Phi_{\nu_{\mu}}^{\nu_{P},RHC}(E_{\nu},\theta_{OA}) = \sum_{i=1}^{N_{OA}} c_{i}(\theta_{OA}) \Phi_{\nu_{\mu},i}^{\nu_{P},FHC}(E_{\nu})$$

 In Leila's analysis, she will use this type of linear combination to predict the RHC wrong sign background and subtract it for each offaxis angle bin

Linear Combinations for Nue Appearance Analysis

 In the nue appearance analysis we will begin by making the linear combination that reproduced the SK beam+oscillated nue with the nuPRISM numu fluxes:

$$\Phi_{v_e}^{SK} + \Phi_{v_\mu}^{SK}(E_v) P_{v_\mu \to v_e}(E_v | \Delta m_{32}^2, \theta_{13}...) = \sum_{i=1}^{N_{OM}} c_i (\Delta m_{32}^2, \theta_{13}, ...) \Phi_{v_\mu, i}^{vP}(E_v)$$

- If the numu and nue cross sections were the same, this could be used to predict the event rate in the far detector
- Since they aren't the same, we need to make a correction by the nue/ numu cross section ratio

Linear Combinations for Nue Appearance Analysis, Cont.

- We can't measure the nue/numu cross section ratio for monoenergetic beams or the SK total nue flux, but we can measure it for the nuPRISM intrinsic nue flux
- We reproduce shape of the intrinsic nue flux with the off-axis numu fluxes to the cross section ratio is produced with identical fluxes in the numerator and denominator

$$\Phi^{\mathsf{v}P}_{\mathsf{v}_{e}}(E_{\mathsf{v}}) = \sum_{i=1}^{N_{\mathit{OA}}} c_{i} \Phi^{\mathsf{v}P}_{\mathsf{v}_{\mathsf{m}},i}(E_{\mathsf{v}})$$

 In practice, it may be best to make this measurement with the more off-axis beam nue in nuPRISM since the average energy is a bit lower and the spectrum is more similar to the SK nue spectrum

What I will Show in this Talk

- Leila and Asher are now working on the analyses that will use these new linear combination techniques
- I did some preliminary feasibility studies for the linear combination fits for the EOI
- I added some scripts to the macros directory to make these fits
- I will show the results of the preliminary linear combination fits

Wrong Sign Numu Fit

- This can be run with the fit_spectrum_WrongSign.cc macro
- I run the fit over the 0.4-1.5 energy range for the 3.0-4.0 degree off-axis range
- Fits at larger off-axis angle ranges work better since the energy is lower
- To produce fits in fine off-axis binning, I should make more flux statistics

Wrong Sign Numu Fit Results

- The wrong sign flux can be fitted well in the 0.4-1.5 GeV range
- Expect that this region is where the nuPRISM reconstruction efficiency is high
- The coefficients are relatively smooth
 - Have not check the statistical errors for the selected samples

SK Beam+Oscillation Nue Fit

- This can be run with the fit_spectrum_SKNue.cc macro

 - Here the angles are sin²θ
- I ran the fit with theta23=0.5, dm2=0.0024, theta13=0.0241, elo=0.4, ehi=1.5

SK Beam+Oscillation Nue Results

- The SK total nue flux can be reproduced well with the nuPRISM offaxis fluxes
- Haven't yet tried other assumptions the oscillation parameters
- The coefficients mostly around 0 with a peak near 2.5 degrees
- Coefficents are relatively smooth with the default macro settings

nuPRISM Beam Nue Fit

- This can be run with the fit_spectrum_BeamNue.cc macro
- I run the fit over the 0.4-1.5 energy range for the 2.5-4.0 degree off-axis range
- Fits at larger off-axis angle ranges work better since the energy is lower
- Larger off-axis bins also cover a lower energy range that is more consistent with the total SK Nue flux

nuPRISM Beam Nue Results

- Once again, the flux in the 0.4-1.5 GeV range can be reasonably reproduced
- The coefficients are largely selecting the most on-axis numu flux with some corrections from the more off-axis fluxes

Conclusions

- We can use the linear combination method to model the nuPRISM wrong sign antineutrino mode background, and nue fluxes for the appearance analysis
- I have check macros for doing the flux fits into the repository
- In all three cases, the flux fits work reasonably well
- This work will be continued by Leila and Asher