

vPRISM Software tutorial

Mark Scott 2nd vPRISM workshop July 23nd 2014

Overview and goals

- Current software status:
 - What MC do we have?
 - What tools are there to do analyses?
 - Where can you get these?
- Goals of tutorial:
 - Download the software and files from the grid
 - Perform a flux coefficient fit
 - Apply reconstruction smearing and efficiencies
 - Apply flux and cross section weights
 - Produce an SK spectrum prediction

Downloading the software

- nuPRISM software stored in the T2K repository:
 - export CVSROOT=:ext:anoncvs@repo.nd280.org:/home/trt2kmgr/T2KRepository
 - export CVS_RSH=ssh
 - unset CVS_SERVER
 - cvs co GlobalAnalysisTools/nuPRISM
 - cd GlobalAnalysisTools/nuPRISM
 - make links
 - make
 - source setup.sh
- Setup.sh may complain if not using SL6:
 - Change line 2 from: SCRIPT_PATH="`dirname \'\$0\'`"
 - To: SCRIPT_PATH="`dirname \$0`"

Downloading the files

- Some files are on the grid:
 - /grid/t2k.org/nd280/contrib/nuprism/
 - We will register the remaining files with the LFC and copy them to Europe in the coming weeks
- Today's files:
 - lcg-cp
 lfn:/grid/t2k.org/nd280/contrib/nuprism/neut_5142/nuprism_numode_1km
 /filename.root ./filename.root
- Or, from http://trshare.triumf.ca/~mscott/nuPRISM Files/

nuPRISM files

- So far we have NEUT version 5.1.4.2 and 5.3.2 files
 - genev_320a_1km_nd2_1xx_17227.root
- Prefix tells you what type of file it is:
 - Genev = neutrino event file
 - Fluxweight = neutrino flux throw file
 - xsec_var = cross section throw file
- 320 = horn current, a = forward polarity, m = negative polarity
- 1km = distance of neutrino flux plane from neutrino target
- nd2 = off-axis flux plane
 - nd2 = from 0.8 degrees off-axis to 2.1 degrees
 - nd3 = 2.1 degrees to 3.4 degrees
 - nd4 = 3.4 to 4.7 degrees off-axis
- The rest is a run number, nxx, and a random ID

Software overview

- Main classes/directories:
 - Processing nuPRISM and SK events
 - NuPrismVector
 - SKNtple
 - fiTQunEfficiency
 - Performing flux fits
 - Prob3++.20121225
 - Macro
 - Folders with data tables
 - eff_tables
 - Inputs
 - sk_flux_weights
 - sk_splines
 - src
 - The analysis code

nuPrismVector

- Class to read in genev, fluxweight and xsec_var files:
 - NuPrismVector nuVectors(fVectorFile, fFluxWeightFile, fXSecWeightFile, mec);
 - fXXXFile = text file with list of nuprism files
 - mec = Flag to turn on Nieves (mec = 1) or Martini (mec = 2) events
 - Your file lists should include files with MEC interactions
 - Not going to cover here, but feel free to ask me questions about the MEC side of things
- Iterates through nuPRISM events
- Provides event selections
- Access to systematic weights
- Access to reconstructed event properties

SKNtple

- Class to read in SK ntuple and xsec_var files:
 - SKNtple skMC(fSKVectorFile,fSKFluxWeightFile, fSKXSecWeightFile, mec);
 - fXXXFile = text file with list of SK files
 - FSKFluxWeightFile = path to ROOT file containing flux splines
 - mec = Flag to turn on Nieves (mec = 1) or Martini (mec = 2) events
- Iterates through SK events
- Provides event selections
- Access to systematic weights
- Access to reconstructed event properties

fiTQunEfficiency

- Class to mock-up fiTQun reconstruction
 - fiTQunEff = new fiTQunEfficiency(fEffFile,fResFile,19853423);
 - fEffFile = fiTQun reconstruction efficiency table file
 - fResFile = fiTQun reconstruction smearing file
 - Random seed should be kept constant
- Main methods are shown below:

```
fiTQunEff->FindMERandTopology(nuVectors);
fiTQunEff->CalculateToWall(nuVectors);
fiTQunEff->CalculateEfficency(nuVectors);
// Get fiTQun reconstruction efficiency
double eff = nuVectors.fiTQunEff[1];
// Apply efficiency (throw random events away)
if(rand.Rndm()>eff) continue;
// Apply the smearing to give reconstructed
quantities
fiTQunEff->ApplySmearing(nuVectors);
```


Prob3++.20121225

- Oscillation probabilities
 - We use the probNuPRISM.h class
 - ProbNuPrism* osc_prob = new ProbNuPrism(dm2, theta23);
- Two initialisation methods:
 - ProbNuPrism(double Delta_M2, double theta23, double delta_m2, double theta13, double theta12, double Delta);
 - ProbNuPrism(double Delta_M2 = 2.4e-3, double theta23 = 0.5);
- Set whether we're looking at anti-neutrino oscillations and which mass hierarchy:
 - void ProbNuPrism::SetAntiNeutrino(bool isAntiNeutrino)
 - void ProbNuPrism::SetInverseMassHierarchy(bool isInverted)
- Methods to get any oscillation probability:
 - double ProbNuPrism::GetProbNuMuNuMu(float energy)

macros

- Directory of ROOT macros to perform fits of the nuPRISM flux
 - fit_spectrum_SKNue.cc
 - fit_spectrum_BeamNue.cc
 - fit_spectrum_WrongSign.cc
 - fit_spectrum_numu_disappearance.cc
- Most macros just about work need more validation
- Can use the compile_fit_spectrum_Prob3.cc macro to load the necessary libraries for the fit macro

macros

- Directory of ROOT macros to perform fits of the nuPRISM flux
 - fit_spectrum_SKNue.cc
 - fit_spectrum_BeamNue.cc
 - fit_spectrum_WrongSign.cc
 - fit_spectrum_numu_disappearance.cc
- Most macros just about work need more validation
- Can use the compile_fit_spectrum_Prob3.cc macro to load the necessary libraries for the fit macro

First task!

- Modify compile_fit_spectrum_Prob3.cc to load the fit_spectrum_numu_disappearance.cc macro
- Load the macro:
 - root -l compile fit spectrum Prob3.cc
- fit_spectrum(double theta, double dm2, bool appearance = false, double elo = 0.4, double ehi = 3.0)
 - theta = value of sin^2(theta_23)
 - dm2 = value of delta m^2_23
 - appearance = should always be false, not tested
 - elo = lowest energy to fit
 - ehi = highest energy to fit

First task!

• Try running: fit_spectrum(0.5, 0.00241, 0, 0.4, 1.5)

 Look at canvas 1 – the nuPRISM numu fit (red) to the oscillated SK numu spectrum (blue)

 Canvas 2 shows the fit coefficients as a function of off-axis angle

First task!

- Other histograms less good... show numu_bar, c4, and nue, c6, flux fits using numu coefficients
- c3 is the fractional difference between the nuPRISM numu fitted flux and the SK numu flux
- c5 is the same for the cumu_bar fluxes

- Produces an output file:
 - nuprism_coef_newsmooth_241_50000.root
- Contains the fit coefficients
- Input to the nuPRISM analysis

The analysis code

- Focus on nuprism_numu_disappearance_analysis.cc
 - It uses all the steps discussed previously
- Exectuable: bin/nuprism_numu_disappearance_analysis

Options:

```
-f = text file with list of nuPRISM genev files
```

- -w = text file with list of nuPRISM fluxweight files
- -x = text file with list of nuPRISM xsec var files
- -skf = text file with list of SK event files
- -skw = Path to the sk flux weights/sk weights numode.root
- -skx = text file containing the SK xsec_var files
- -e = Path to eff tables/fQEffTbl.root
- -r = Path to eff_tables/fQSmrTbl.root
- -c = Path to coefficient file
- -o = Output filename.root
- -dm2 = value of delta m^2 23
- -theta23 = value of sin^2(theta_23)
- -mec = Are we adding Nieves (mec = 1) or Martini (mec = 2) MEC events

nuprism_numu disappearance_analysis

- Selects nuPRISM events
- Applies analysis corrections
- Calculates the predicted number of events at SK

- Also applies cross section and flux uncertainty throws
- Calculates systematic covariance matrix
- Calculates statistical uncertainty matrix

Second task!

- List the nuPRISM and SK files you downloaded in the appropriate text file:
 - Is /path/to/genev/files*.root >> genev_nuprism.txt
 - Is /path/to/fluxweight/files*.root >> fluxweight_nuprism.txt
 - Is /path/to/xsec_var/files*.root >> xsec_nuprism.txt
 - Is /path/to/sk/vector/files*.root >> sk_events.txt
 - Is /path/to/sk/xsec_var/files*.root >> xsec_sk_events.txt
- From the top nuPRISM directory try running:

./bin/nuprism_numu_disappearance_analysis -f genev_nuprism.txt -w fluxweight_nuprism.txt -x xsec_nuprism.txt -skf sk_events.txt -skw ./sk_flux_weights/sk_weights_numode.root -skx xsec_sk_events.txt -e eff_tables/fQEffTbl.root -r eff_tables/fQSmrTbl.root -c macros/nuprism_coef_newsmooth_241_50000.root -o output.root -dm2 0.00241 -theta23 0.5 -mec 0

Analysis output 1

- Horrible file with terrible naming of histograms!
 - Apologies, this will be fixed soon
- Take a look at nuprism_selected_ptheta_oaa the selected events at nuPRISM

Analysis output 2

- stats_error_coarse stores the statistics covariance matrix
- erec_linear_comb is the nuPRISM prediction at SK

Analysis output 3

• Final thing, erec_covariance_total = final covariance matrix

- erec_covariance_flux_0 = XSec covariance matrix
- erec_covariance_flux_1 = Flux and XSec covariance
- erec_covariance_flux_n = Flux source (n-1) covariance

Summary

- Code and analysis is evolving rapidly
 - Have code to perform all the steps needed to do an oscillation analysis
 - Will be cleaned up and better commented in the near future
- Please feel free to email me or Mark Hartz if you have any questions or suggestions
 - Don't suffer in silence!