Euler characteristics of Fujiki-Oka resolutions via continued fractions

Yusuke Sato (Kogakuin University)

Background

Theorem (Batyrev,99)

Let G be a finite subgroup of $\operatorname{SL}(n, \mathbb{C})$. If a crepant resolution $f: Y \rightarrow X=\mathbb{C}^{n} / G$ exists, then the Euter number of Y equals the number of conjugacy classes of G.

Remark

- If $n=2,3$, a crepant resolution is always exist.
(Ito, Markushevich, Roan)
- When $n \geq 4$, crepant resolutions do not always exist.

Background

Theorem (Batyrev,99)

Let G be a finite subgroup of $\operatorname{SL}(n, \mathbb{C})$. If a crepant resolution $f: Y \rightarrow X=\mathbb{C}^{n} / G$ exists, then the Euler number of Y equals the number of conjugacy classes of G.

Remark

- If $n=2,3$, a crepant resolution is always exist. (Ito, Markushevich, Roan)
- When $n \geq 4$, crepant resolutions do not always exist.

In this talk, we generalize this correspondence to a finite cyclic group of $G L(n, \mathbb{C})$

Summary of results

G : a finite semi-isolated cyclic group of $G L(n, \mathbb{C})$ or a finite cyclic group of $G L(3, \mathbb{C})$.
For the resolution which is obtained by continued fractions (that is a Fujiki-Oka resolution), the equation
the Euler characteristic \quad the height of of the resolution $=$ continued fractions $+\# G$
holds.

Applying the case of G in $\operatorname{SL}(3, \mathbb{C})$, then the resolution is a crepant. In this case, it is included in the Batyrev's theorem.

Resolutions of toric varieties

$G \subset \mathrm{GL}(n, \mathbb{C}):$ a finite cyclic group
We can assume that any $g \in G$ is of the form $\operatorname{diag}\left(\varepsilon^{a_{1}}, \ldots, \varepsilon^{a_{n}}\right)$, where $\varepsilon^{r}=1$. Write $g=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$.

We consider subdivisions of the cone σ instead of resolutions of quotient singularities.

Resolutions of toric varieties

$G \subset \mathrm{GL}(n, \mathbb{C}):$ a finite cyclic group
We can assume that any $g \in G$ is of the form $\operatorname{diag}\left(\varepsilon^{a_{1}}, \ldots, \varepsilon^{a_{n}}\right)$, where $\varepsilon^{r}=1$.
Write $g=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$.

- $\bar{g}=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$,
- $N_{G}:=\mathbb{Z}^{n}+\mathbb{Z} \bar{g}:$ lattice
- e_{1}, \ldots, e_{n} :the canonical basis of \mathbb{Z}^{n},
- Cone $\sigma=\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

The toric variety $X\left(\sigma, N_{G}\right) \cong \mathbb{C}^{n} / G$.
We consider subdivisions of the cone σ instead of resolutions of quotient singularities.

Resolutions of toric varieties

$G \subset \mathrm{GL}(n, \mathbb{C}):$ a finite cyclic group
We can assume that any $g \in G$ is of the form $\operatorname{diag}\left(\varepsilon^{a_{1}}, \ldots, \varepsilon^{a_{n}}\right)$, where $\varepsilon^{r}=1$. Write $g=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$.

- $\bar{g}=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$,
- $N_{G}:=\mathbb{Z}^{n}+\mathbb{Z} \bar{g}:$ lattice
- e_{1}, \ldots, e_{n} : the canonical basis of \mathbb{Z}^{n},
- Cone $\sigma=\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

The toric variety $X\left(\sigma, N_{G}\right) \cong \mathbb{C}^{n} / G$.
We consider subdivisions of the cone σ instead of resolutions of quotient singularities.

Multidimensional continued fractions

We construct the resolution for a cyclic group of $\mathrm{GL}(n, \mathbb{C})$. \rightarrow Using multidimensional continued fractions (defined by Ashikaga,19).

Notation.

- An n-dimensional fraction $\frac{\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{r}$ is proper if the positive integer a_{i} and r satisfies $a_{i} \leq r$.
- $\mathbb{Q}_{n}^{p r o p}$: the set of an n-dimensional proper fraction
- $\overline{\mathbb{Q}_{n}^{p r o p}}=\mathbb{Q}_{n}^{p r o p} \cup\{\infty\}$

Multidimensional continued fractions

Definition(Ashikaga)

Let $\frac{\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{r}$ be a proper fraction.
For $1 \leq i \leq n$, the i-th remainder map $R_{i}: \overline{\mathbb{Q}_{n}^{p r o p}} \rightarrow \overline{\mathbb{Q}_{n}^{\text {prop }}}$ is define by

$$
R_{i}\left(\frac{\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{r}\right)=\left\{\begin{array}{cl}
\frac{\left({\overline{a_{1}}}^{a_{i}}, \ldots, \overline{-r}^{a_{i}}, \ldots,{\overline{a_{n}}}^{a_{i}}\right)}{a_{i}} & \text { if } a_{i} \neq 0 \\
\infty & \text { if } a_{i}=0
\end{array}\right.
$$

and $R_{i}(\infty)=\infty$ where ${\overline{a_{j}}}^{a_{i}}$ is an integer satisfying
$0 \leq{\overline{a_{j}}}^{a_{i}}<a_{i}$ and $\overline{a_{j}}{ }^{a_{i}} \equiv a_{j}$ modulo a_{i}.
Example:If $v=\frac{(1,2,7)}{12}$, then

$$
R_{2}(v)=\frac{(1,0,1)}{2} \text { and } R_{3}(v)=\frac{(1,2,2)}{7}
$$

Definition(Ashikaga)

Let $\frac{a}{r}$ be an n-dimensional proper fraction. The remainder polynomial $\mathcal{R}_{*}\left(\frac{\mathbf{a}}{r}\right) \in \overline{\mathbb{Q}}_{n}^{\text {prop }}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is defined by
$\mathcal{R}_{*}\left(\frac{\mathbf{a}}{r}\right)=\frac{\mathbf{a}}{r}+\sum_{\left(i_{1}, i_{2}, \ldots, i_{\iota}\right) \in \mathbf{I}^{l}, l \geq 1}\left(R_{i_{\iota}} \cdots R_{i_{2}} R_{i_{1}}\right)\left(\frac{\mathbf{a}}{r}\right) \cdot x_{i_{1}} x_{i_{2}} \cdots x_{i_{\iota}}$
where we exclude terms with coefficients ∞ or $\frac{(0,0, \ldots, 0)}{1}$.
Example :Let $v=\frac{(1,2,7)}{12}$, then the remainder polynomial is

$$
\begin{aligned}
\mathcal{R}_{*}\left(\frac{(1,2,7)}{12}\right) & =\frac{(1,2,7)}{12}+\frac{(1,0,1)}{2} x_{2}+\frac{(1,2,2)}{7} x_{3} \\
& +\frac{(1,1,0)}{2} x_{3} x_{2}+\frac{(1,0,1)}{2} x_{3} x_{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}_{*}\left(\frac{(1,2,7)}{12}\right) & =\frac{(1,2,7)}{12}+\frac{(1,0,1)}{2} x_{2}+\frac{(1,2,2)}{7} x_{3} \\
& +\frac{(1,1,0)}{2} x_{3} x_{2}+\frac{(1,0,1)}{2} x_{3} x_{3} .
\end{aligned}
$$

Let $G=\left\langle\frac{1}{12}(1,2,7)\right\rangle$. Subdivide by the lattice point $v_{i}=g^{i} \in N_{G}$.

We call the induced toric morphism Fujiki-Oka resolution.

Definition

For a proper fraction (or a lattice point in N_{G}) $b=\left(b_{1}, \ldots, b_{n}\right) / r$, we define the height as follows:

$$
\text { height }(b)=\sum_{i=1}^{n} b_{i}-r
$$

In addition, the height of a remainder polynomial \mathcal{R}_{*} is defined the sum of heights of all coefficients in a remainder polynomial.

Example: height $\left(\frac{(1,2,7)}{12}\right)=1+2+7-12=-2$.
height $\left(\mathcal{R}_{*}\left(\frac{(1,2,7)}{12}\right)\right)=-2+0+-2+0+0=-4$.

height vs age

For the subdivison $\Sigma \rightarrow \sigma$, we have a birational map $f: X\left(N_{G}, \Sigma\right) \rightarrow X\left(N_{G}, \sigma\right)$ and

$$
K_{X\left(N_{G}, \Sigma\right)}=f^{*}\left(K_{X\left(N_{G}, \sigma\right)}\right)+\sum_{\tau \in \Sigma(1)} a_{\tau} D_{\tau}
$$

where D_{τ} is an exceptional divisor corresponding to the one dimensional cone $\tau \in \Sigma(1)$ in Σ and a_{τ} is a discrepancy.

Remark

- age $-1=$ height $/ r=$ discrepancy.
- Since the height of the remainder polynomial is a local value, it does not match the sum of the discrepancies.

Main result

Theorem (S)

Let G be a cyclic group of type $\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)$. For the Fujiki-Oka resolution $f: Y \rightarrow \mathbb{C}^{n} / G$, the following holds

$$
e(Y)=\operatorname{height}\left(\mathcal{R}_{*}\left(\frac{\left(1, a_{2}, \ldots, a_{n}\right)}{r}\right)\right)+\# G
$$

where $e(Y)$ is a topological Eular characteristic of Y.
Example: Let $G=\frac{1}{12}(1,2,7)$, then height $\left(\mathcal{R}_{*}\left(\frac{1}{12}(1,2,7)\right)\right)=-4$.
Since the Euler characteristic of F.O.R is a number of three dimensional cone, we have

$$
8=-4+12
$$

Two dimensional case

In dimension two, a Fujiki-Oka resolution is a minimal resolution.

Let G be a cyclic group of type $\frac{1}{7}(1,3)$. Then the remainder polynomial is

$$
\mathcal{R}_{*}\left(\frac{(1,3)}{7}\right)=\frac{(1,3)}{7}+\frac{(1,2)}{3} x_{2}+\frac{(1,1)}{2} x_{2} x_{2}
$$

The height of \mathcal{R}_{*} is $-3+0+0=-3$.
The Euler characteristic of the minimal resolution Y of \mathbb{C}^{2} / G is

$$
e(Y)=-3+7=4
$$

Theorem(K.Sato, S)

The Fujiki-Oka resolution is crepant if and only if the height of all coefficients of the remainder polynomial are 0. Especially, if $G \subset S L(3, \mathbb{C})$ then a Fujiki-Oka resolution is crepant.

Corollary

For a Gorenstein cyclic quotient singularity and its
Fujiki-Oka crepant resolution, we have $e(Y)=\# G$.
There are many examples where the height of the remainder polynomial equals to 0 even though it is not Gorenstein. Let $G=\frac{1}{11}(1,3,4)$. Then the remainder polynomial is

$$
\mathcal{R}_{*}\left(\frac{(1,3,4)}{11}\right)=\frac{(1,3,4)}{11}+\frac{(1,1,1)}{3} x_{2}+\frac{(1,3,1)}{4} x_{3}
$$

$$
+\frac{(1,2,1)}{3} x_{3} x_{3}+\frac{(1,1,1)}{2} x_{3} x_{3} x_{3} .
$$

Theorem (S)

Let G be a cyclic group of $G L(3, \mathbb{C})$. For the Hilbert basis resolution $f: Y \rightarrow \mathbb{C}^{3} / G$, the following holds

$$
e(Y)=\operatorname{height}(f)+\# G,
$$

where $e(Y)$ is a topological Eular characteristic of Y.

Remark

- The exceptional divisors of the Hilbert basis resolution are BGS-essential divisors.
- In dimension three, a Hilbert basis resolution is always exist (Bouvier, Gonzalez-Sprinberg). It is obtained by repeated star subdivisions (Aguzzoli, Mundici).
- G is not necessarily semi-isolated (including the type of $\frac{1}{30}(2,3,5)$).

Future tasks

- Classify the group where the height of the remainder polynomial equals 0 .
- Construct the McKay correspondence for $G L(3, \mathbb{C})$ as an analogy of Reid's recipe, that is the correspondence between the exceptional divisors and the special representations.
(joint work with Y.Ito and K.Sato)

