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Background

Theorem (Batyrev,99)

Let G be a finite subgroup of SL(n, C). If a crepant
resolution f: Y — X = C"/G exists, then the Euler number
of Y equals the number of conjugacy classes of G.

Remark

@ If n = 2,3, a crepant resolution is always exist.
(Ito, Markushevich, Roan)

@ When n > 4, crepant resolutions do not always exist.
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Background

Theorem (Batyrev,99)

Let G be a finite subgroup of SL(n, C). If a crepant
resolution f: Y — X = C"/G exists, then the Euler number
of Y equals the number of conjugacy classes of G.

Remark

@ If n = 2,3, a crepant resolution is always exist.
(Ito, Markushevich, Roan)

@ When n > 4, crepant resolutions do not always exist.

In this talk, we generalize this correspondence
to a finite cyclic group of GL(n, C)
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Summary of results

G: a finite semi-isolated cyclic group of GL(n, C)

or a finite cyclic group of GL(3,C).
For the resolution which is obtained by continued fractions
(that is a Fujiki-Oka resolution), the equation

the Euler characteristic the height of

of the resolution ~ continued fractions T #G

holds.

Applying the case of G in SL(3, C), then the resolution is a
crepant. In this case, it is included in the Batyrev's theorem.
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Resolutions of toric varieties

G C GL(n, C): a finite cyclic group

We can assume that any g € G is of the form
diag(e®, ..., €%), where €" = 1.

Write g = 2(a1, ..., an).
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Resolutions of toric varieties

G C GL(n, C): a finite cyclic group
We can assume that any g € G is of the form

diag(e®, ..., €%), where €" = 1.
Write g = 2(a1, ..., an).
o g:%(al,,aﬂn) GRTL'
o Ng :=7Z" + Zg: lattice
@ e1,...,eynthe canonical basis of Z",

e Coneog =(ey,...,en).
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Resolutions of toric varieties

G C GL(n, C): a finite cyclic group
We can assume that any g € G is of the form

diag(e®, ..., %), where ¢" = 1.
Write g = 2(a1, ..., an).
e g=1(ai,...,an) ER",
o Ng :=7Z" + Zg: lattice
@ ey, ...,epthe canonical basis of Z™,
e Coneog =(ey,...,en).

The toric variety X (o, Ng) = C*/G.

We consider subdivisions of the cone o instead of
resolutions of quotient singularities.
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Toric resolution via continued fractions
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Multidimensional continued fractions

We construct the resolution for a cyclic group of GL(n, C).
— Using multidimensional continued fractions
(defined by Ashikaga,19).

Notation.

@ An n-dimensional fraction (4182::1.9n) js proper if the
positive integer a; and r satisfies a; < 7.

@ QV°P: the set of an m-dimensional proper fraction
° Qﬂrop QD'I‘OP U {OO}
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Multidimensional continued fractions

Definition(Ashikaga)

Let —(al'“Q;'"a’") be a proper fraction.
For 1 < 4 < m, the i-th remainder map R; :

T0 T0 -
PTOP _, QPToP

define by
@™, L, ot am™)
R¢<(a1'a2""’a”)>= <l a ) if a; #0
r 0 ifa; =20

and R;(c0) = oo where a;* is an integer satisfying
0 < @;* < a; and a;* = a; modulo a;.

Example:f v = (11227) then

(1,0,1) (1,2,2)
2

and R3(v) = - . s

RQ(’U) =



Toric resolution via continued fractions
00e000

Definition(Ashikaga)

Let % be an n-dimensional proper fraction. The remainder
polynomial Ry (2) € QY P[z1, Zo, . .., xn] is defined by

a a a
R <—> =—+ ) (Ri, -+ Ri,Rq;) <;> T4y Tip -+ - Ty

T T (aian . d)EL, (21
where we exclude terms with coefficients co or M.
Example :Let v = % then the remainder polynomial is
(1, 2, 7)) (1,2,7) . (1,0,1) (1,2,2)
R, ([~~—=r /) — T — -z
. < 12 2 T2 2t 3
1,1,0 1,0,1
+ (2—)51331132 + %333533-

10/18



Toric resolution via continued fractions

[elefe] lele]

(1,2,7) _(,2,7) (1,0,1) (1,2,2)
1,1 1 1

Let G = (55(1,2,7)). Subdivide by the lattice point

v, = gt € Ng.

We call the induced toric morphism Fujiki-Oka resolution.
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Toric resolution via continued fractions
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Definition
For a proper fraction (or a Lattice point in Ng )
b= (b1,...,bn)/T , we define the height as follows:

n
height(b) = ) b; — 7.
i=1
In addition, the height of a remainder polynomial Ry« is

defined the sum of heights of all coefficients in a remainder
polynomial.

(1,2,7)

Example: helght< ) —14247—12=—2.

helght<R*<(127)>> = 2404 -2404+0=—

12/18



Toric resolution via continued fractions
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height vs age

For the subdivison >~ — o, we have a birational map
f i X(Ng,~X) - X(Ng,o) and

Kx(nex) = F*(Kx(ne.o)) + ). arDx,
TEZ (1)

where D+ is an exceptional divisor corresponding to the one
dimensional cone 7 € X(1) in = and ar is a discrepancy.

Remark
@ age — 1 = height/r = discrepancy.

@ Since the height of the remainder polynomial is a Local
value, it does not match the sum of the discrepancies.
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Main result
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Main result

Let G be a cyclic group of type (1, az,...,an). For the
Fujiki-Oka resolution f : Y — C™/G, the following holds

e(Y) = height (R* <(1’ a2, — a”)>) + #G,

where e(Y) is a topological Eular characteristic of Y.

Example: Let G = 5(1,2,7) , then
height (R« (5(1,2,7))) = —4.
Since the Euler characteristic of
F.O.R is a number of three dimen-
sional cone, we have

S8 — —44 19



Main result
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Two dimensional case

In dimension two, a Fujiki-Oka resolution is a minimal
resolution.

Let G be a cyclic group of type %(1, 3). Then the remainder
polynomial is

(1, 3)> (1,3) , (1,2) (1,1)
R = T ——Tox
* ( - 2 + 3 >+ > 2T>
The height of R« is =34+ 04+ 0= —3.
The Euler characteristic of the minimal resolution Y of
C?/G is

e(Y)=—-347=4.
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Theorem(K.Sato, S)

The Fujiki-Oka resolution is crepant if and only if the height
of all coefficients of the remainder polynomial are O.
Especially, if G C SL(3,C) then a Fujiki-Oka resolution is
crepant.

For a Gorenstein cyclic quotient singularity and its
Fujiki-Oka crepant resolution, we have e(Y) = #G.

There are many examples where the height of the remainder
polynomial equals to O even though it is not Gorenstein.
Let G = 1—11(1, 3,4).Then the remainder polynomial is

R, ((1,131,4)> _ (1,131,4) i (1; 1)$2+ (1431 1)333
n (1,2,1)$3$ (1,1,1)

~L T 3T,
3 3+ > 3T3T3 o)1



Main result
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Let G be a cyclic group of GL(3,C). For the Hilbert basis
resolution f:Y — C3/G, the following holds

e(Y) = height (f) + #G,

where e(Y') is a topological Eular characteristic of Y.

Remark

@ The exceptional divisors of the Hilbert basis resolution
are BGS-essential divisors.

@ In dimension three, a Hilbert basis resolution is always
exist (Bouvier, Gonzalez-Sprinberg).
It is obtained by repeated star subdivisions (Aguzzoli,
Mundici).

@ G is not necessarily semi-isolated (including the type of
(2, 3,5)).
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Main result
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Future tasks

@ Classify the group where the height of the remainder
polynomial equals O.

@ Construct the McKay correspondence for GL(3,C) as an
analogy of Reid's recipe, that is the correspondence
between the exceptional divisors and the special
representations.

(joint work with Y.Ito and K.Sato)
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