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Background Toric resolution via continued fractions Main result

Background

Theorem (Batyrev,99)
Let G be a finite subgroup of SL(n;C). If a crepant
resolution f : Y ! X = Cn=G exists, then the Euler number
of Y equals the number of conjugacy classes of G.

Remark
If n = 2; 3, a crepant resolution is always exist.
(Ito, Markushevich, Roan)
When n – 4, crepant resolutions do not always exist.

In this talk, we generalize this correspondence
to a finite cyclic group of GL(n;C)
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Summary of results

G: a finite semi-isolated cyclic group of GL(n;C)
or a finite cyclic group of GL(3;C).

For the resolution which is obtained by continued fractions
(that is a Fujiki-Oka resolution), the equation

the Euler characteristic
of the resolution =

the height of
continued fractions +#G

holds.

Applying the case of G in SL(3;C), then the resolution is a
crepant. In this case, it is included in the Batyrev’s theorem.
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Resolutions of toric varieties

G ȷ GL(n;C): a finite cyclic group
We can assume that any g 2 G is of the form
diag("a1; : : : ; "an), where "r = 1.
Write g = 1

r
(a1; : : : ; an).

—g = 1
r
(a1; : : : ; an) 2 Rn,

NG := Zn + Z—g: lattice
e1; : : : ; en:the canonical basis of Zn,
Cone ff = he1; : : : ; eni.

The toric variety X(ff; NG) ‰= Cn=G.

We consider subdivisions of the cone ff instead of
resolutions of quotient singularities.
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Multidimensional continued fractions

We construct the resolution for a cyclic group of GL(n;C).
→ Using multidimensional continued fractions
(defined by Ashikaga,19).

Notation.
An n-dimensional fraction (a1;a2;:::;an)

r
is proper if the

positive integer ai and r satisfies ai » r.
Qpropn : the set of an n-dimensional proper fraction

Qpropn =Qpropn [ f1g
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Multidimensional continued fractions

Definition(Ashikaga)

Let (a1;a2;:::;an)
r

be a proper fraction.

For 1 » i » n, the i-th remainder map Ri : Qpropn ! Qpropn is
define by

Ri

 

(a1; a2; : : : ; an)

r

!

=

8

>

<

>

:

“

a1
ai ; :::; `r

ai
; :::;an

ai
”

ai
if ai 6= 0

1 if ai = 0

and Ri(1) =1 where ajai is an integer satisfying
0 » ajai < ai and ajai ” aj modulo ai.

Example:If v = (1;2;7)
12
, then

R2(v) =
(1; 0; 1)

2
and R3(v) =

(1; 2; 2)

7
:
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Definition(Ashikaga)
Let a

r
be an n-dimensional proper fraction. The remainder

polynomial R˜
“

a
r

”

2 Qpropn [x1; x2; : : : ; xn] is defined by

R˜
 

a

r

!

=
a

r
+

X

(i1;i2;:::;il)2Il; l–1
(Ril ´ ´ ´Ri2Ri1)

 

a

r

!

´xi1xi2 ´ ´ ´xil

where we exclude terms with coefficients 1 or (0;0;:::;0)
1

.

Example :Let v = (1;2;7)
12
, then the remainder polynomial is

R˜
 

(1; 2; 7)

12

!

=
(1; 2; 7)

12
+
(1; 0; 1)

2
x2 +

(1; 2; 2)

7
x3

+
(1; 1; 0)

2
x3x2 +

(1; 0; 1)

2
x3x3:
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R˜
 

(1; 2; 7)

12

!

=
(1; 2; 7)

12
+
(1; 0; 1)

2
x2 +

(1; 2; 2)

7
x3

+
(1; 1; 0)

2
x3x2 +

(1; 0; 1)

2
x3x3:

Let G =
D

1
12
(1; 2; 7)

E

. Subdivide by the lattice point
vi = —gi 2 NG.

We call the induced toric morphism Fujiki-Oka resolution.
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Definition
For a proper fraction (or a lattice point in NG )
b = (b1; : : : ; bn)=r , we define the height as follows:

height(b) =
n
X

i=1

bi ` r:

In addition, the height of a remainder polynomial R˜ is
defined the sum of heights of all coefficients in a remainder
polynomial.

Example: height
„

(1;2;7)
12

«

= 1 + 2 + 7` 12 = `2.

height
„

R˜
„

(1;2;7)
12

««

= `2 + 0 +`2 + 0 + 0 = `4.
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height vs age

For the subdivison ˚! ff, we have a birational map
f : X(NG;˚)! X(NG; ff) and

KX(NG ;˚) = f
˜(KX(NG ;ff)) +

X

fi2˚(1)
afiDfi ;

where Dfi is an exceptional divisor corresponding to the one
dimensional cone fi 2 ˚(1) in ˚ and afi is a discrepancy.

Remark
age` 1 = height=r = discrepancy.
Since the height of the remainder polynomial is a local
value, it does not match the sum of the discrepancies.
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Main result

Theorem (S)

Let G be a cyclic group of type 1
r
(1; a2; : : : ; an). For the

Fujiki-Oka resolution f : Y ! Cn=G, the following holds

e(Y ) = height

 

R˜
 

(1; a2; : : : ; an)

r

!!

+#G;

where e(Y ) is a topological Eular characteristic of Y .

Example: Let G = 1
12
(1; 2; 7) , then

height
“

R˜
“

1
12
(1; 2; 7)

””

= `4.
Since the Euler characteristic of
F.O.R is a number of three dimen-
sional cone, we have

8 = `4 + 12: 14 / 18
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Two dimensional case

In dimension two, a Fujiki-Oka resolution is a minimal
resolution.

Let G be a cyclic group of type 1
7
(1; 3). Then the remainder

polynomial is

R˜
 

(1; 3)

7

!

=
(1; 3)

7
+
(1; 2)

3
x2 +

(1; 1)

2
x2x2

The height of R˜ is `3 + 0 + 0 = `3.
The Euler characteristic of the minimal resolution Y of
C2=G is

e(Y ) = `3 + 7 = 4:
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Theorem(K.Sato, S)
The Fujiki-Oka resolution is crepant if and only if the height
of all coefficients of the remainder polynomial are 0.
Especially, if G ȷ SL(3;C) then a Fujiki-Oka resolution is
crepant.

Corollary
For a Gorenstein cyclic quotient singularity and its
Fujiki-Oka crepant resolution, we have e(Y ) = #G:

There are many examples where the height of the remainder
polynomial equals to 0 even though it is not Gorenstein.
Let G = 1

11
(1; 3; 4).Then the remainder polynomial is

R˜
 

(1; 3; 4)

11

!

=
(1; 3; 4)

11
+
(1; 1; 1)

3
x2 +

(1; 3; 1)

4
x3

+
(1; 2; 1)

3
x3x3 +

(1; 1; 1)

2
x3x3x3:
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Theorem (S)
Let G be a cyclic group of GL(3;C). For the Hilbert basis
resolution f : Y ! C3=G, the following holds

e(Y ) = height (f) + #G;

where e(Y ) is a topological Eular characteristic of Y .

Remark
The exceptional divisors of the Hilbert basis resolution
are BGS-essential divisors.
In dimension three, a Hilbert basis resolution is always
exist (Bouvier, Gonzalez-Sprinberg).
It is obtained by repeated star subdivisions (Aguzzoli,
Mundici).
G is not necessarily semi-isolated (including the type of
1
30
(2; 3; 5)).
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Future tasks

Classify the group where the height of the remainder
polynomial equals 0.

Construct the McKay correspondence for GL(3;C) as an
analogy of Reid’s recipe, that is the correspondence
between the exceptional divisors and the special
representations.
(joint work with Y.Ito and K.Sato)
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