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Large Charge Convexity Conjecture

Consider a modification of the Weak Gravity Conjecture:
- That some particle should have non-negative binding energy
- Binding energy also from contact terms

In AdS, the CFT dual is a constraint on the spectrum:

A (n1go + n2q0) = A (n1go) + A (n2qo)

For go not necessarily minimal, but still “order one”

Since discrete, is really superadditivity




Microscopic non-convexity

If o had to be the minimal charge, would certainly not be true

Consider the simplest interacting Wess-Zumino model:

Aharony, Palti 2108.04594
Hellerman, Orlando, Reffert,

W g (D 3 Watanabe 1505.01537

R-charges of fields are:
« +2/3 for scalar
« -1/3 for fermion

In 4d: A(1/3) = 3/2, while A(2/3) = 1 (not convex) - take qo = 2/3




The meaning of “order one”

Sharon, Watanabe 2301.08262

* Counterexample proposed with “clockwork-like” system of
charges (1, 3, ..., 3V)

- Due to microscopic non-convexity, convexity does not start until
the largest unit of charge

° q0:3N

* Lesson is that large N can delay convexity




Goal

* Would like to explore the large charge regime of a CFT with
microscopic non-convexity due to a boson

- Need at least two scalars of different charge

* Why:
- Possible phase transition between semi-classical saddles?
- Saddles with multiple scalar VEVs?
* Multiple Goldstone embeddings?
- Large charge restoration of microscopic convexity?




The simplest model

Model suggested in: Orlando,
Palti 2303.02178

- Consider the following (Euclidean) theory in 4-& dimensions:
A b
_ 2 9 A 2 25 2 3
c= 3 (100 + i) + alolonl + Gonol + e
- Will normalize the charges as 1 and 1/3 respectively
* Has a single non-trivial (and non-decoupled) fixed point:

oy Notice the approximate
1671‘26 =1 AZ ik 0147 te:hﬁghsa:)rllgt(ieoi)l/mmetry of
a ~ 0.093 |
b~ 0.046




Preparing the description

* First do a conformal mapping to the cylinder:
)‘ai b 1-3
L= fgz (|3¢'i|2 +m?|¢;|® + I|¢i|4) +aloy[*[¢2]® + gﬁf’lﬁbg + h.c.
* With conformal mass m being the inverse radius R, soon set to 1
* Next write fields with polar variables:

1 1 1 Ai a b
L= (5(391')2 + 508 (0x:)° + 5m?pf + 1—6~P?)+1P?ﬂ§+"1—2mp§ cos(x1—3x2)
g=1.4
Pi  ixi Only non-singular when
¢'i = _ﬁetl’ D isyno?l-vsan%l;li?lg! )




Preparing the description

- Finally perform the following change of variables:
nx = nixi + n2xz
W= X1 — IX2
* Where n =n; + ny/3
= This ensures that x has the interpretation of Goldstone:

. 1
Q= —1i / dQlg_q (3)41(735) + gam(ﬁ))

= —i/de_l Oy (i)




Calculation of scaling dimension

* For each charge n, we should pick an ansatz wavefunction to
evolve in Euclidean time
Badel, Cuomo, Monin, Rattazzi

- Same method as used for model of single field 1906.01269

(nle™ gn)

* The lowest energy eigenvalue is then A/R
- We will make the convenient choice:

Constants to be
fixed later

. / Dx(# exp[ — / dnd_.lx(ﬁ)] bt =i =i

- Saddle point Neumann and Dirichlet boundary conditions




Calculation of scaling dimension

* Look for constant solutions p1 =f;, p2=f;, w =0
- Bulk EOMs for ¥; are:
Xi =0

* The x Neumann condition from wavefunction fixes:

1

X1 = —?:,U,T, X —gi}t'}"
2

17 (pf + %2) R™ Q4 1=n

* Familiar superfluid form for x




Calculation of scaling dimension

* Finally the bulk EOMs for p; are:

Lo B 2 22) Atz b o5
0= (-1 +m*+35) i+ LR+ 55

¥ A b
0= (% +m* 4+ gflz) fo+ szg + Zf1f22
- Second equation implies a solution with f, = O (the previously

found one-field solution for ¢,)

* In the exchange symmetric limit (b = 0, A1 = A2), this leads to a
similar solution for just @, (with y - p/3)

- Broken so solution is f, # 0 and f; # 0 but small (by ~10 at
large charge)
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Expected transition to large regime at
en=1

@ action is larger than ¢, action by
factor of 3 at small charge - really
map onto @." and @," series!

* Makes sense because require more
@.'s to get same charge

Factor becomes 3*2 (in exchange
symmetric limit) - ¢, saddle
Interpretation not so clear now




Interpretation

* S0 @; saddle is always dominant (no phase transition)
- But here f, = 0 - polar change of variables singular

= Thus only applicable to integer-charge states
- Created by acting on vacuum with ¢@,"

- What about third-integer-charge states?




Interpretation

- Rather than being associated with the large-action @, saddle, act
on ¢, saddle with ¢, (quantum, no purely semi-classical
description)

* On the large charge saddle, the mixing term acts as a mass

212
alp1|*[ 2|
* One obtains: Compare:
2 4/3
A(n) = 67 (Aln)
2a /\1 82
mo =/ —pu =~ 1.095u
A1

82

Aln+1) — A(n) = ()‘1”) e R




Interpretation

* Since the @, mass is larger than the gap:

n +1/3) = ¢q|n) n +2/3) = ¢hn + 1) # ¢3|n)

* Spectrum not monotonic, let alone convex
* But notice it could have been both if at large charge m; < u/2
* Also must have m; > p/3 for ¢, saddle to be dominant

- Does some other theory lie in this window? Interpretation?




Summary

* Within convex envelope, bosons can also lead to microscopic
non-convexity

* Restoration seems possible (though no examples known)

- The saddle of the largest-charge field is always dominant

- Should think of fractional-charge states as quantum
fluctuations around saddle

> No phase transition
- Not a proof but appears universal




Convexity: Lessons from the EFT

Now only focus on semiclassical envelope
When EFT iIs gapped, convexity guaranteed:

- A~ QUED
* Less straight forward when there is a light mode:
1 1 Orlando, Palti 2303.02178
.9 . .2 2
Lroro = 5070 + 2mpBromo + 570 — 5770

Goldstone Light mode

Theory can still be stable for y < 0 due to “magnetic” cross term
= In this case, power of Q is sub-unity (concave)




Building superfluid EFTs

- Since Weyl + Diff -~ Conformal, first build Weyl invariant metric:
Guv = (9°P 0ax0pX)guv, With x = pt +
* Then write down everything allowed:

S:/ddx\/fy(cl+czf2+---)

= fddac V9l0x| (cl + co (BI;)Q +)

* Legendre transform makes leading Q%Y behavior clear




Marginally convex case

- First look at theories with exactly massless mode
= Due to this relation, should have constant p:

L= (9x)* [cl — ¢ (1 —Cz(g::)z) +]

Kinetic terms, etc.

A op
0Q> — 9Q

> Notice how the massless ¢ acts as a Lagrange multiplier
A=uQ—L
d
= pQ — c1q-1 p
(Line from origin to a
point on the graph is

* Subleading ci: unconstrained: if negative — subadditive 207030 990

Using same idea, Gabriel has constructed the right)
EFTs with negative mass for light mode




Conclusions

* These conjecture-violating EFTs are peculiar (non-generic), and
likely have no UV completion

* Nevertheless, they are internally consistent
* It does not seem possible to prove the conjecture from within the EFT
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