Exploring Aspects of Large Charge Convexity

Andrew Gomes

Ecole Polytechnique Fédérale de Lausanne (EPFL)
With Tim Cohen, Ipak Fadakar, Alexander Monin, Riccardo Rattazzi

Large Charge Convexity Conjecture

- Consider a modification of the Weak Gravity Conjecture:
- That some particle should have non-negative binding energy
- Binding energy also from contact terms
- In AdS, the CFT dual is a constraint on the spectrum:

$$
\Delta\left(n_{1} q_{0}+n_{2} q_{0}\right) \geq \Delta\left(n_{1} q_{0}\right)+\Delta\left(n_{2} q_{0}\right)
$$

- For q_{0} not necessarily minimal, but still "order one"
- Since discrete, is really superadditivity

Microscopic non-convexity

- If q_{0} had to be the minimal charge, would certainly not be true
- Consider the simplest interacting Wess-Zumino model:

$$
W=g \Phi^{3}
$$

- R-charges of fields are:
- +2/3 for scalar
- $-1 / 3$ for fermion
- In $4 \mathrm{~d}: \Delta(1 / 3)=3 / 2$, while $\Delta(2 / 3)=1$ (not convex) \rightarrow take $\mathrm{q}_{0}=2 / 3$

The meaning of "order one"

- Counterexample proposed with "clockwork-like" system of charges (1, 3, ... 3^{N})
- Due to microscopic non-convexity, convexity does not start until the largest unit of charge
- $\mathrm{q}_{0}=3^{\mathrm{N}}$
- Lesson is that large N can delay convexity

Goal

- Would like to explore the large charge regime of a CFT with microscopic non-convexity due to a boson
- Need at least two scalars of different charge
- Why:
- Possible phase transition between semi-classical saddles?
- Saddles with multiple scalar VEVs?
- Multiple Goldstone embeddings?
- Large charge restoration of microscopic convexity?

The simplest model

- Consider the following (Euclidean) theory in $4-\varepsilon$ dimensions:

$$
\mathcal{L}=\sum_{i=1,2}\left(\left|\partial \phi_{i}\right|^{2}+\frac{\lambda_{i}}{4}\left|\phi_{i}\right|^{4}\right)+a\left|\phi_{1}\right|^{2}\left|\phi_{2}\right|^{2}+\frac{b}{6} \phi_{1} \phi_{2}^{+3}+h . c .
$$

- Will normalize the charges as 1 and $1 / 3$ respectively
- Has a single non-trivial (and non-decoupled) fixed point:

$$
16 \pi^{2} \epsilon=1
$$

$$
\begin{aligned}
\lambda_{1} & \approx 0.155 \\
\lambda_{2} & \approx 0.147 \\
a & \approx 0.093 \\
b & \approx 0.046
\end{aligned}
$$

Preparing the description

- First do a conformal mapping to the cylinder:

$$
\mathcal{L}=\sum_{i=1,2}\left(\left|\partial \phi_{i}\right|^{2}+m^{2}\left|\phi_{i}\right|^{2}+\frac{\lambda_{i}}{4}\left|\phi_{i}\right|^{4}\right)+a\left|\phi_{1}\right|^{2}\left|\phi_{2}\right|^{2}+\frac{b}{6} \phi_{1} \phi_{2}^{\dagger 3}+\text { h.c. }
$$

- With conformal mass m being the inverse radius R, soon set to 1
- Next write fields with polar variables:

$$
\begin{gathered}
\mathcal{L}=\sum_{i=1.2}\left(\frac{1}{2}\left(\partial \rho_{i}\right)^{2}+\frac{1}{2} \rho_{i}^{2}\left(\partial \chi_{i}\right)^{2}+\frac{1}{2} m^{2} \rho_{i}^{2}+\frac{\lambda_{i}}{16} \rho_{i}^{4}\right)+\frac{a}{4} \rho_{1}^{2} \rho_{2}^{2}+\frac{b}{12} \rho_{1} \rho_{2}^{3} \cos \left(\chi_{1}-3 \chi_{2}\right) \\
\phi_{i}=\frac{\rho_{i}}{\sqrt{2}} e^{i \chi_{i}}
\end{gathered}
$$

Preparing the description

- Finally perform the following change of variables:

$$
\begin{aligned}
n \chi & =n_{1} \chi_{1}+n_{2} \chi_{2} \\
\omega & =\chi_{1}-3 \chi_{2}
\end{aligned}
$$

- Where $n=n_{1}+n_{2} / 3$
- This ensures that X has the interpretation of Goldstone:

$$
\begin{aligned}
Q & =-i \int d \Omega_{d-1}\left(\partial_{\chi_{1}(\vec{n})}+\frac{1}{3} \partial_{\chi_{2}(\vec{n})}\right) \\
& =-i \int d \Omega_{d-1} \partial_{\chi(\vec{n})}
\end{aligned}
$$

Calculation of scaling dimension

- For each charge n, we should pick an ansatz wavefunction to evolve in Euclidean time
- Same method as used for model of single field

$$
\left\langle\psi_{n}\right| e^{-H T}\left|\psi_{n}\right\rangle
$$

- The lowest energy eigenvalue is then Δ / R
- We will make the convenient choice:

Constants to be

$$
\left|\psi_{n_{1}, n_{2}}\right\rangle=\int \mathcal{D} \chi(\vec{n}) \exp \left[i \frac{n}{R^{d-1} \Omega_{d-1}} \int d \Omega_{d-1} \chi(\vec{n})\right]\left|\rho_{1}=f_{1}, \rho_{2}=f_{2}, \chi(\vec{n}), \omega=0\right\rangle
$$

- Saddle point Neumann and Dirichlet boundary conditions

Calculation of scaling dimension

- Look for constant solutions $\rho_{1}=f_{1}, \rho_{2}=f_{2}, \omega=0$
- Bulk EOMs for X_{i} are:

$$
\ddot{\chi}_{i}=0
$$

- The χ Neumann condition from wavefunction fixes:

$$
\begin{aligned}
\chi_{1}=-i \mu \tau, & \chi_{2}
\end{aligned}=-\frac{1}{3} i \mu \tau
$$

- Familiar superfluid form for X

Calculation of scaling dimension

- Finally the bulk EOMs for ρ_{i} are:

$$
\begin{aligned}
& 0=\left(-\mu^{2}+m^{2}+\frac{a}{2} f_{2}^{2}\right) f_{1}+\frac{\lambda_{1}}{4} f_{1}^{3}+\frac{b}{12} f_{2}^{3} \\
& 0=\left(-\frac{\mu^{2}}{9}+m^{2}+\frac{a}{2} f_{1}^{2}\right) f_{2}+\frac{\lambda_{2}}{4} f_{2}^{3}+\frac{b}{4} f_{1} f_{2}^{2}
\end{aligned}
$$

- Second equation implies a solution with $\mathrm{f}_{2}=0$ (the previously found one-field solution for φ_{1})
- In the exchange symmetric limit $\left(b=0, \lambda_{1}=\lambda_{2}\right)$, this leads to a similar solution for just φ_{2} (with $\mu \rightarrow \mu / 3$)
- Broken so solution is $\mathrm{f}_{2} \neq 0$ and $\mathrm{f}_{1} \neq 0$ but small (by $\sim 10^{-2}$ at large charge)

Results

- Expected transition to large regime at $\varepsilon n \approx 1$
- φ_{2} action is larger than φ_{1} action by factor of 3 at small charge \rightarrow really map onto $\varphi_{1}{ }^{n}$ and $\varphi_{2}{ }^{n}$ series!
- Makes sense because require more φ_{2} 's to get same charge
- Factor becomes $3^{4 / 3}$ (in exchange symmetric limit) $\rightarrow \varphi_{2}$ saddle interpretation not so clear now

Interpretation

- So φ_{1} saddle is always dominant (no phase transition)
- But here $\mathrm{f}_{2}=0 \rightarrow$ polar change of variables singular
- Thus only applicable to integer-charge states
- Created by acting on vacuum with $\varphi_{1}{ }^{\text {n }}$
- What about third-integer-charge states?

Interpretation

- Rather than being associated with the large-action φ_{2} saddle, act on φ_{1} saddle with φ_{2} (quantum, no purely semi-classical description)
- On the large charge saddle, the mixing term acts as a mass

$$
a\left|\phi_{1}\right|^{2}\left|\phi_{2}\right|^{2}
$$

- One obtains:

$$
m_{2}=\sqrt{\frac{2 a}{\lambda_{1}}} \mu \approx 1.095 \mu
$$

Compare:

$$
\begin{aligned}
& \Delta(n)=\frac{6 \pi^{2}}{\lambda_{1}}\left(\frac{\lambda_{1} n}{8 \pi^{2}}\right)^{4 / 3} \\
& \Delta(n+1)-\Delta(n) \approx\left(\frac{\lambda_{1} n}{8 \pi^{2}}\right)^{1 / 3}=\mu R
\end{aligned}
$$

Interpretation

- Since the φ_{2} mass is larger than the gap:

$$
|n+1 / 3\rangle=\phi_{2}|n\rangle
$$

$$
|n+2 / 3\rangle=\phi_{2}^{\dagger}|n+1\rangle \neq \phi_{2}^{2}|n\rangle
$$

- Spectrum not monotonic, let alone convex
- But notice it could have been both if at large charge $m_{2}<\mu / 2$
- Also must have $m_{2}>\mu / 3$ for φ_{1} saddle to be dominant
- Does some other theory lie in this window? Interpretation?

Summary

- Within convex envelope, bosons can also lead to microscopic non-convexity
- Restoration seems possible (though no examples known)
- The saddle of the largest-charge field is always dominant
- Should think of fractional-charge states as quantum fluctuations around saddle
- No phase transition
- Not a proof but appears universal

Convexity: Lessons from the EFT

- Now only focus on semiclassical envelope
- When EFT is gapped, convexity guaranteed:
- $\Delta \sim Q^{d /(d-1)}$
- Less straight forward when there is a light mode:

$$
\mathcal{L}_{\pi_{0}, r_{0}}=\frac{1}{2} \alpha \dot{\pi}_{0}^{2}+2 m \beta r_{0} \dot{\pi}_{0}+\frac{1}{2} \dot{r}_{0}^{2}-\frac{1}{2} \gamma r_{0}^{2}
$$

- Theory can still be stable for $\mathrm{y}<0$ due to "magnetic" cross term
- In this case, power of Q is sub-unity (concave)

Building superfluid EFTs

- Since Weyl + Diff \rightarrow Conformal, first build Weyl invariant metric:

$$
\hat{g}_{\mu \nu}=\left(g^{\alpha \beta} \partial_{\alpha} \chi \partial_{\beta} \chi\right) g_{\mu \nu}, \text { with } \chi=\mu t+\pi
$$

- Then write down everything allowed:

$$
\begin{aligned}
S & =\int d^{d} x \sqrt{\hat{g}}\left(c_{1}+c_{2} \hat{R}+\cdots\right) \\
& =\int d^{d} x \sqrt{g}|\partial \chi|^{d}\left(c_{1}+c_{2} \frac{R}{(\partial \chi)^{2}}+\cdots\right)
\end{aligned}
$$

- Legendre transform makes leading $\mathrm{Q}^{\mathrm{d} /(\mathrm{d}-1)}$ behavior clear

Marginally convex case

- First look at theories with exactly massless mode
- Due to this relation, should have constant μ :

$$
\frac{\partial^{2} \Delta}{\partial Q^{2}}=\frac{\partial \mu}{\partial Q}
$$

$$
\mathcal{L}=(\partial \chi)^{d}\left[c_{1}-\phi^{2}\left(1-c_{2} \frac{m^{2}}{(\partial \chi)^{2}}\right)+\cdots\right]
$$

Kinetic terms, etc.

- Notice how the massless φ acts as a Lagrange multiplier

$$
\begin{aligned}
\Delta & =\mu Q-L \\
& =\mu Q-c_{1} \Omega_{d-1} \mu^{d}
\end{aligned}
$$

- Subleading c_{1} unconstrained: if negative \rightarrow subadditive

Using same idea, Gabriel has constructed
EFTs with negative mass for light mode
(Line from origin to a point on the graph is above the graph to the right)

Conclusions

- These conjecture-violating EFTs are peculiar (non-generic), and likely have no UV completion
- Nevertheless, they are internally consistent
- It does not seem possible to prove the conjecture from within the EFT

