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Large Charge Convexity Conjecture

Aharony, Palti 2108.04594

● Consider a modification of the Weak Gravity Conjecture:
● That some particle should have non-negative binding energy
● Binding energy also from contact terms

● In AdS, the CFT dual is a constraint on the spectrum:

● For q0 not necessarily minimal, but still “order one”
● Since discrete, is really superadditivity
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Microscopic non-convexity

Aharony, Palti 2108.04594
Hellerman, Orlando, Reffert, 
Watanabe 1505.01537

● If q0 had to be the minimal charge, would certainly not be true
● Consider the simplest interacting Wess-Zumino model:

● R-charges of fields are:
● +2/3 for scalar
● -1/3 for fermion

● In 4d: Δ(1/3) = 3/2, while Δ(2/3) = 1 (not convex) → take q0 = 2/3



 4

The meaning of “order one”
Sharon, Watanabe 2301.08262

● Counterexample proposed with “clockwork-like” system of 
charges (1, 3, …, 3N)

● Due to microscopic non-convexity, convexity does not start until 
the largest unit of charge

● q0 = 3N

● Lesson is that large N can delay convexity
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Goal

● Would like to explore the large charge regime of a CFT with 
microscopic non-convexity due to a boson

● Need at least two scalars of different charge

● Why:
● Possible phase transition between semi-classical saddles?
● Saddles with multiple scalar VEVs?
● Multiple Goldstone embeddings?
● Large charge restoration of microscopic convexity?
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The simplest model
Model suggested in: Orlando, 
Palti 2303.02178

● Consider the following (Euclidean) theory in 4-ε dimensions:

● Will normalize the charges as 1 and 1/3 respectively
● Has a single non-trivial (and non-decoupled) fixed point:

Notice the approximate 
exchange symmetry of 
this solution!
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Preparing the description

● First do a conformal mapping to the cylinder:

● With conformal mass m being the inverse radius R, soon set to 1
● Next write fields with polar variables:

Only non-singular when 
ρi is non-vanishing!
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Preparing the description

● Finally perform the following change of variables:

● Where n = n1 + n2/3
● This ensures that χ has the interpretation of Goldstone:
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Calculation of scaling dimension

● For each charge n, we should pick an ansatz wavefunction to 
evolve in Euclidean time

● Same method as used for model of single field

● The lowest energy eigenvalue is then Δ/R
● We will make the convenient choice:

● Saddle point Neumann and Dirichlet boundary conditions

Badel, Cuomo, Monin, Rattazzi 
1909.01269

Constants to be 
fixed later
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Calculation of scaling dimension

● Look for constant solutions ρ1 = f1, ρ2 = f2, ω = 0
● Bulk EOMs for χi are:

● The χ Neumann condition from wavefunction fixes:

● Familiar superfluid form for χ
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Calculation of scaling dimension

● Finally the bulk EOMs for ρi are:

● Second equation implies a solution with f2 = 0 (the previously 
found one-field solution for φ1)

● In the exchange symmetric limit (b = 0, λ1 = λ2), this leads to a 
similar solution for just φ2 (with μ → μ/3)

● Broken so solution is f2 ≠ 0 and f1 ≠ 0 but small (by ~10-2 at 
large charge)
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Results

● Expected transition to large regime at 
εn ≈ 1

● φ2 action is larger than φ1 action by 
factor of 3 at small charge → really 
map onto φ1

n and φ2
n series!

● Makes sense because require more 
φ2’s to get same charge

● Factor becomes 34/3 (in exchange 
symmetric limit) → φ2 saddle 
interpretation not so clear now 

~n

~n4/3
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Interpretation

● So φ1 saddle is always dominant (no phase transition)
● But here f2 = 0 → polar change of variables singular

● Thus only applicable to integer-charge states
● Created by acting on vacuum with φ1

n

● What about third-integer-charge states?
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Interpretation

● Rather than being associated with the large-action φ2 saddle, act 
on φ1 saddle with φ2 (quantum, no purely semi-classical 
description)

● On the large charge saddle, the mixing term acts as a mass

● One obtains: Compare:
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Interpretation

● Since the φ2 mass is larger than the gap:

● Spectrum not monotonic, let alone convex
● But notice it could have been both if at large charge m2 < μ/2
● Also must have m2 > μ/3 for φ1 saddle to be dominant

● Does some other theory lie in this window? Interpretation?
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Summary

● Within convex envelope, bosons can also lead to microscopic 
non-convexity

● Restoration seems possible (though no examples known)
● The saddle of the largest-charge field is always dominant

● Should think of fractional-charge states as quantum 
fluctuations around saddle

● No phase transition
● Not a proof but appears universal
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Convexity: Lessons from the EFT

● Now only focus on semiclassical envelope
● When EFT is gapped, convexity guaranteed:

● Δ ~ Qd/(d-1)

● Less straight forward when there is a light mode:

● Theory can still be stable for γ < 0 due to “magnetic” cross term
● In this case, power of Q is sub-unity (concave)

Orlando, Palti 2303.02178

Goldstone Light mode
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Building superfluid EFTs

● Since Weyl + Diff → Conformal, first build Weyl invariant metric:

● Then write down everything allowed:

● Legendre transform makes leading Qd/(d-1) behavior clear
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Marginally convex case

● First look at theories with exactly massless mode
● Due to this relation, should have constant μ:

● Notice how the massless φ acts as a Lagrange multiplier

● Subleading c1 unconstrained: if negative → subadditive

Kinetic terms, etc.

(Line from origin to a 
point on the graph is 
above the graph to 
the right)Using same idea, Gabriel has constructed 

EFTs with negative mass for light mode
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Conclusions

● These conjecture-violating EFTs are peculiar (non-generic), and 
likely have no UV completion

● Nevertheless, they are internally consistent
● It does not seem possible to prove the conjecture from within the EFT
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