

A variety of partially solvable models: *** From closed spin chains to open spin chains

[Phys. Rev. B 109, 104307 (2024), arXiv:2409.03208, Work in progress with KPP]

Focus Week on Non-equilibrium Quantum Dynamics @IPMU, Sep. 30 – Oct. 04

Chihiro Matsui (The University of Tokyo)

Collaborators

Hosho Katsura (The University of Tokyo)

Chiara Paletta (Ljubljana University)

Balazs Pozsgay (Eötvös Loránd University)

Naoto Tsuji (The University of Tokyo)

MULERSITY OF TO THE STATE OF TH

Outline

- What is "partial solvability"?
 - Definition of partial solvability
 - Thermalization & quantum many-body scars (QMBS)
- Closed partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Open partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Concluding remarks

Outline

- What is "partial solvability"?
 - Definition of partial solvability
 - Thermalization & quantum many-body scars (QMBS)
- Closed partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Open partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Concluding remarks

MULERSITY OF TO THE STATE

Integrability

- Quantum) Integrable systems
 - No clear definition.
 - Often said to be "integrable" if the Yang-Baxter structure exists.

 $R_{12}(\lambda_1, \lambda_2)R_{23}(\lambda_2, \lambda_3)R_{13}(\lambda_1, \lambda_3) = R_{13}(\lambda_1, \lambda_3)R_{23}(\lambda_2, \lambda_3)R_{12}(\lambda_1, \lambda_2)$ $R_{12}, R_{23}, R_{13} \in \operatorname{End}(V_1 \otimes V_2 \otimes V_3)$

Decomposing a many-body scattering into a sequence of two-body scatterings does not depend on the way of decomposition.

SWICE 18TT

Integrability

- Quantum) Integrable systems
 - No clear definition.
 - Often said to be "integrable" if the Yang-Baxter structure exists. $R_{12}(\lambda_1, \lambda_2)R_{23}(\lambda_2, \lambda_3)R_{13}(\lambda_1, \lambda_3) = R_{13}(\lambda_1, \lambda_3)R_{23}(\lambda_2, \lambda_3)R_{12}(\lambda_1, \lambda_2)$ $R_{12}, R_{23}, R_{13} \in \text{End}(V_1 \otimes V_2 \otimes V_3)$
 - Never thermalize.
 - \Rightarrow Violation of (strong) eigenstate thermalization hypothesis (ETH) \doteq Typicality

 $\lim_{N \to \infty} \langle E_a | X_{\text{macro}} | E_a \rangle = \langle X_{\text{macro}} \rangle_{\text{MC}}, \quad \forall E_a \in (E - \delta E, E] \qquad \text{[Deutsch (1991), Srednicki (1994),...]} \\ \text{[Biroli et al. (2010), Iyoda et al. (2017)]}$

Partial Solvability

- Partially solvable systems
 - Hamiltonians with some solvable energy eigenstates (not all).
 - Hamiltonians with the block diagonal structure.

 $\mathcal{H} \simeq W \oplus W^{\perp}$

Solvable (invariant) subspace

- \Rightarrow Solvability does not necessarily come from integrability.
 - e.g. Projector embeddings [Shiraishi et al. (2017)]

Restricted spectrum generating algebra (rSGA) [Moudgalya et al. (2018)]

[Vefek et al. (2017), Moudgalya et al. (2020)] Hilbert space fragmentation (HSF) [Pai et al. (2019), Sala et al. (2020), Khemani et al. (2020)]

Partial Solvability

- Partially solvable systems
 - Hamiltonians with some solvable energy eigenstates (not all).
 - Hamiltonians with the block diagonal structure.

Solvable (invariant) subspace

 $\mathcal{H}\simeq W\oplus W^{\perp}$

Partially non-thermalize. "Quantum many-body scars (QMBS)"

 \Rightarrow Weakly violate ergodicity in Hilbert space. \rightleftharpoons Principle of equal probability

e.g. Scar in stadium billiard [Serbyn et al. (2021)]

b. starting from near unstable periodic trajectory

Thermalization & QMBS

QMBS exhibit

- Persistent oscillation in local observables.
- Relatively small entanglement entropy $\sim o(V)$ compared to those of thermal states $\sim O(V)$.
- Matrix product states
 - Have entanglement entropy estimated by their bond dimensions *x* from above.

 $S_{\rm EE} := -\mathrm{tr}\left(\rho'\log\rho'\right) \le \log\chi$

 With a finite bond dimension is a good benchmark for finding QMBS.
 [Berr

Domain-wall density after the quench from $|\mathbb{Z}_2\rangle = |\bullet \circ \bullet \circ \cdots \rangle$ on the Rydberg atom chain.

(●: Excited state; ○: Ground state)

[Bernien et al. (2017); Nature 551, 579 (Fig. 6b)]

Thermalization & QMBS

QMBS exhibit

- Persistent oscillation in local observables.
- Relatively small entanglement entropy $\sim o(V)$ compared to those of thermal states $\sim O(V)$.
- Matrix product states
 - Have entanglement entropy estimated by their bond dimensions X from above.

 $S_{\rm EE} := -\mathrm{tr}\left(\rho'\log\rho'\right) \le \log\chi$

With a finite bond dimension is a good benchmark for finding QMBS.

Half-chain entanglement entropy of the spin-1 XY model in zero-magnetization sector.

[Chandran et al. (2003); Ann. Rev. 14, 443 (Fig. 1c)]

Outline

- Definition of partial solvability
- Thermalization & quantum many-body scars (QMBS)
- Closed partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Open partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Concluding remarks

- Restricted spectrum-generating algebra (rSGA) [Arno et al. (1988), Yang (1989)] [Moudgalya et al. (2018)]
 - Partial dynamical symmetry

 $\exists Q, \text{ s.t.} [H, Q] - \mathcal{E}Q \Big|_W = 0, \quad W \subset \mathcal{H}, \ Q : \text{Local operator}$

• The solvable subspace is systematically constructed if $|\psi_0\rangle$ is an energy eigenstate:

$$H|\psi_{0}\rangle = \mathcal{E}_{0}|\psi_{0}\rangle \Rightarrow HQ^{n}|\psi_{0}\rangle = (\mathcal{E}_{0} + n\mathcal{E})|\psi_{0}\rangle$$
$$|\psi(0)\rangle = \sum_{n} c_{n}Q^{n}|\psi_{0}\rangle, \quad c_{n} \in \mathbb{R}$$
$$\langle\psi(t)|\mathcal{O}_{\text{local}}|\psi(t)\rangle$$
$$= \sum_{m,n} c_{m}c_{n}e^{i\mathcal{E}(m-n)t}\langle\psi(0)|\mathcal{O}_{\text{local}}|\psi(0)\rangle$$

Strong revivals observed in dynamics of Loschmidt echo⁵ ht¹⁰ ¹⁵ for the spin-1 XY from each initial state. [Chandran et al. (2023); Ann. Rev. 14, 443 (Fig. 1d)]

Simple example: free fermion model

$$H = \sum_{k} \Lambda_{k} \eta_{k}^{\dagger} \eta_{k}$$
$$\{\eta_{k}, \eta_{\ell}^{\dagger}\} = \delta_{k.\ell}, \quad \{\eta_{k}, \eta_{\ell}\} = \{\eta_{k}^{\dagger}, \eta_{\ell}^{\dagger}\} = 0$$

$$H\eta_{k_1}^{\dagger}\cdots\eta_{k_n}^{\dagger}|\mathrm{vac}\rangle = (\Lambda_{k_1}+\cdots+\Lambda_{k_n})\eta_{k_1}^{\dagger}\cdots\eta_{k_n}^{\dagger}|\mathrm{vac}\rangle$$

- Example of rSGA: perturbed spin-1 XY model [Schecter et al. (2019)] $H = \sum_{x=1}^{N} \mathbf{1} \otimes \cdots \otimes \lim_{x,x+1} \otimes \cdots \otimes \mathbf{1} \in \operatorname{End}((\mathbb{C}^{3})^{N}), \quad \mathbb{C}^{3} = \operatorname{span}\{|0\rangle, |1\rangle, |2\rangle\}$ $h = \frac{J}{2}(S^{x} \otimes S^{x} + S^{y} \otimes S^{y}) + \frac{m}{2}(S^{z} \otimes \mathbf{1} + \mathbf{1} \otimes S^{z})$
 - Spin-1 operators

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \quad S^{y} = \frac{1}{\sqrt{2}i} \begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & 1\\ 0 & -1 & 0 \end{pmatrix}, \quad S^{z} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Non-integrable spin-1 chain. (Not all energy eigenstates are solvable.)

- Example of rSGA: perturbed spin-1 XY model
 - Trivial energy eigenstate $H|\Omega\rangle = -hN|\Omega\rangle, \quad |\Omega\rangle = |22...2\rangle$
 - Subspace of quasiparticle (bimagnon) excitations $W = \operatorname{span}\{(Q^{\dagger})^n | \Omega \rangle\}_n, \quad Q^{\dagger} = \sum_{x=1}^N (-1)^x (S_x^+)^2$

is the solvable subspace due to the spectrum generating algebra

$$[H, Q^{\dagger}] - 2mQ^{\dagger}\Big|_{W} = 0.$$

0.8 |*L***(t)|²** [Schecter et al. (2019)] Nematic Néel Nematic ferro 0.2 0.0 10 ht [Chandran et al. (2023); Ann. Rev. 14, 443 (Fig. 1d)] Energy $H(Q^{\dagger})^{3}|\Omega\rangle = (\mathbf{6}m - hN)(Q^{\dagger})^{3}|\Omega\rangle$ $H(Q^{\dagger})^2 |\Omega\rangle = (4m - hN)(Q^{\dagger})^2 |\Omega\rangle$ $HQ^{\dagger}|\Omega\rangle = (2m - hN)Q^{\dagger}|\Omega\rangle$ $|H|\Omega\rangle = -hN|\Omega\rangle$

- Example of rSGA: AKLT-type model [Moudgalya et al. (2018), CM (2024)] $H = \sum_{x=1}^{N} \mathbf{1} \otimes \cdots \otimes \prod_{x,x+1} \otimes \cdots \otimes \mathbf{1} \in \operatorname{End}((\mathbb{C}^{3})^{N}), \quad \mathbb{C}^{3} = \operatorname{span}\{|0\rangle, |1\rangle, |2\rangle\}$ $h = \alpha(|00\rangle\langle 00| + |22\rangle\langle 22|) + \beta|11\rangle\langle 11|$ $+ \frac{\alpha}{2} \sum_{a \in \{0,2\}} (\gamma|a1\rangle\langle a1| + |a1\rangle\langle 1a| + |1a\rangle\langle a1| + \gamma|1a\rangle\langle 1a|)$ $+ \omega^{2}\beta(|02\rangle\langle 02| + |02\rangle\langle 20| + |20\rangle\langle 02| + |20\rangle\langle 20|)$ $\omega\beta(|02\rangle\langle 11| + |11\rangle\langle 02| + |11\rangle\langle 20| + |20\rangle\langle 11|) \quad : \operatorname{ALKT} \operatorname{at} \frac{\beta}{\alpha} = \frac{2}{3}, \gamma = 1, \omega = -\frac{1}{2}.$ Non-integrable spin-1 chain. (Not all energy eigenstates are solvable.)
 - The ground state and some excitation states were known to be solvable for AKLT. [Affleck et al. (1987), Arovas (1989)]

- Example of rSGA: AKLT-type model [Moudgalya et al. (2018), CM (2024)]
 - The exact zero-energy state is written by the matrix product state:

$$\begin{aligned} |\psi_A\rangle &= \sum_{\{m_1,\dots,m_N\}\in\{0,1,2\}^N} \operatorname{tr}_a(K_a A_{m_1} A_{m_2} \cdots A_{m_N}) |m_1,m_2,\dots,m_N\rangle \in (\mathbb{C}^3)^N \\ &= \operatorname{tr}_a(K_a \vec{A} \otimes_p \vec{A} \otimes_p \cdots \otimes_p \vec{A}) \\ \vec{A} &= \begin{pmatrix} a_0 \sigma^+ \\ a_1 \sigma^z \\ a_2 \sigma^- \end{pmatrix}, \quad a_1^2/a_0 a_2 = \omega, \, a_0, a_1, a_2 \in \mathbb{C}, \quad \sigma^+, \sigma^z, \sigma^- : \text{Pauli matrices} \end{aligned}$$

• $K_a \in \text{End}(\mathbb{C}^2)$ is determined by the boundary condition. ($K_a = \mathbf{1}_a$ for the periodic boundary; rank $K_a = 1$ for an open boundary)

- Example of rSGA: AKLT-type model [Moudgalya et al. (2018), CM (2024)]
 - The exact zero-energy state is written by the matrix product state:

$$|\psi_A\rangle = \operatorname{tr}_a(\vec{A}\otimes_p \vec{A}\otimes_p \cdots \otimes_p \vec{A})$$

 $\Leftarrow h(\vec{A} \otimes_p \vec{A}) = \vec{A'} \otimes_p \vec{A} - \vec{A} \otimes_p \vec{A'} : \text{Local divergence condition/} \\ \text{Frustration-free condition for } \vec{A'} = 0$

Quasiparticle-picture for the excitation states:

 $\begin{aligned} |\psi_{A,B^n}\rangle &= (Q^{\dagger})^n |\psi_A\rangle, \quad Q^{\dagger} := \sum_{x=1}^N e^{i\pi x} (S_x^+)^2 \quad : \text{Creates a quasiparticle with momentum } \pi \,. \\ &= \sum_{x_1,\dots,x_n} e^{i\pi \sum_{j=1}^n x_j} \operatorname{tr}_a (\vec{A} \otimes_p \dots \otimes_p \vec{B}_{x_1} \otimes_p \dots \otimes_p \vec{B}_{x_n} \otimes_p \dots \otimes_p \vec{A}) \,, \quad \vec{B} := (S^+)^2 \vec{A} \\ & \leftarrow h(\vec{B} \otimes_p \vec{A} + e^{i\pi} \vec{A} \otimes_p \vec{B}) = \frac{\mathcal{E}}{2} (\vec{B} \otimes_p \vec{A} + e^{i\pi} \vec{A} \otimes_p \vec{B}) - (\vec{B} \otimes \vec{A'} - e^{i\pi} \vec{A'} \otimes_p \vec{B}) \\ & \vec{B} \otimes_p \vec{B} = 0, \quad (S^+)^2 \vec{B} = 0 \quad : \text{No double/adjacent occupations are allowed.} \end{aligned}$

- Example of rSGA: AKLT-type model [Moudgalya et al. (2018), CM (2024)]
 - Restricted spectrum-generating algebra:

$$[H, Q^{\dagger}] - \mathcal{E}Q^{\dagger}|_{W} = 0$$

$$W = \operatorname{span}\left\{|\psi_{A}\rangle, Q^{\dagger}|\psi_{A}\rangle, (Q^{\dagger})^{2}|\psi_{A}\rangle, \dots, (Q^{\dagger})^{\lfloor\frac{N}{2}\rfloor}|\psi_{A}\rangle\right\}$$

• Embedded equally-spaced energy spectrum $H|\psi_A\rangle = 0$ $HQ^{\dagger}|\psi_A\rangle = \mathcal{E}Q^{\dagger}|\psi_A\rangle$: Embedded equally-spaced spectrum \Rightarrow Identical & non-interacting quasiparticles \vdots

 $H(Q^{\dagger})^{n}|\psi_{A}\rangle = n\mathcal{E}(Q^{\dagger})^{n}|\psi_{A}\rangle$

Beyond rSGA

- Generalization of the AKLT-type model [CM (2024)]
 - Quasiparticle-excitation states

$$\begin{split} (Q^{\dagger})^{n} |\psi_{A}\rangle, \quad Q^{\dagger} &:= \sum_{x=1}^{N} e^{i\pi x} (S_{x}^{+})^{2} &: \text{Carrying momentum } \pi \\ & \swarrow \\ Q^{\dagger}(k) &:= \sum_{x=1}^{N} e^{ikx} (S_{x}^{+})^{2} &: \text{Carrying momentum } k \end{split}$$

Repulsive property is lost.

$$\vec{B} \otimes_p \vec{B} = 0, \quad (S^+)^2 \vec{B} \neq 0$$

THERSITY OF THE STATE OF THE ST

Beyond rSGA

Perturbed XXC model [CM (2024)]

$$H = \sum_{x=1}^{N} \mathbf{1} \otimes \cdots \otimes \lim_{x,x+1} \otimes \cdots \otimes \mathbf{1}$$
$$h = \sum_{a \in \{0,2\}} (|a1\rangle\langle a1| + |1a\rangle\langle 1a| + |a1\rangle\langle 1a| + |1a\rangle\langle a1|) + \alpha(|00\rangle\langle 00| + |22\rangle\langle 22|)$$
$$\mathsf{XXC model (integrable)}$$

• $W = \operatorname{span} \{ |\psi_{A,B^n} \rangle \}_n$ is solvable subspace of H.

$$\begin{split} |\psi_{A,B^{n}}\rangle &= \sum_{1 \le x_{1} < \dots < x_{n} \le N} \sum_{P \in \mathfrak{S}_{n}} A_{n}(P) \, e^{i \sum_{j=1}^{n} k_{P(j)} x_{j}} \operatorname{tr}_{a}(\vec{A} \otimes_{p} \dots \otimes_{p} \vec{B} \otimes_{p} \dots \otimes_{p} \vec{B} \otimes_{p} \dots \otimes_{p} \vec{A}) \\ &= \prod_{j=1}^{n} Q^{\dagger}(k_{j}) |\psi_{A}\rangle \quad \Leftarrow \vec{B} = \begin{pmatrix} b_{0} & 0 & 0 \\ 0 & b_{1} & 0 \\ 0 & 0 & b_{0} \end{pmatrix} \vec{A}, \quad \begin{pmatrix} b_{0} & 0 & 0 \\ 0 & b_{1} & 0 \\ 0 & 0 & b_{0} \end{pmatrix} \vec{B} \neq 0 \end{split}$$

THERSITY OF TO THE STATE OF THE

Beyond rSGA

Perturbed XXC model [CM (2024)]

$$\begin{split} H &= \sum_{x=1}^{N} \mathbf{1} \otimes \dots \otimes \lim_{x,x+1} \otimes \dots \otimes \mathbf{1} \\ h &= \sum_{a \in \{0,2\}} (|a1\rangle \langle a1| + |1a\rangle \langle 1a| + |a1\rangle \langle 1a| + |1a\rangle \langle a1|) + \alpha (|00\rangle \langle 00| + |22\rangle \langle 22|) \\ & \text{XXC model (integrable)} \\ \bullet & \text{W} = \text{span} \{|\psi_{A,B^n}\rangle\}_n \text{ is solvable subspace of } H. \quad |\uparrow\rangle \qquad |\downarrow\rangle \qquad |\downarrow\rangle \qquad |\downarrow\rangle \qquad |\uparrow\rangle \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ |\psi_{A,B^n}\rangle &= \sum_{1 \leq x_1 < \dots < x_n \leq N} \sum_{P \in \mathfrak{S}_n} A_n(P) e^{i\sum_{j=1}^n k_{P(j)} x_j} \operatorname{tr}_a(\vec{A} \otimes_p \dots \otimes_p \vec{B}_{x_1} \otimes_p \dots \otimes_p \vec{A}) \\ & : \text{Bethe-like state} \\ e^{ik_j N} &= (-1)^{n-1} \prod_{l=1, l \neq j}^n \frac{e^{i(k_j+k_l)} + 1 - 2e^{ik_l}}{e^{i(k_j+k_l)} + 1 - 2e^{ik_l}}, \quad \forall j = 1, \dots, n : \text{Bethe-ansatz equations} \\ \text{for s=1/2 XXX} \end{split}$$

THERSITY OF THE STATE OF THE ST

Beyond rSGA

Perturbed XXC model [CM (2024)]

$$H = \sum_{x=1}^{N} \mathbf{1} \otimes \cdots \otimes \underset{x,x+1}{h} \otimes \cdots \otimes \mathbf{1}$$

$$h = \sum_{a \in \{0,2\}} (|a1\rangle\langle a1| + |1a\rangle\langle 1a| + |a1\rangle\langle 1a| + |1a\rangle\langle a1|) + \alpha(|00\rangle\langle 00| + |22\rangle\langle 22|)$$

XXC model (integrable)

• $W = \operatorname{span} \{ |\psi_{A,B^n} \rangle \}_n$ is solvable subspace of H. $H |\psi_{A,B^n} \rangle = \mathcal{E}_n(\{k_j\}) |\psi_{A,B^n} \rangle, \qquad \qquad \mathcal{E}_n(\{k_j\}) = \left(2 \sum_{j=1}^n \cos k_j - \frac{n}{2} \right)$

$$H|\psi_{A,B^{n}}\rangle = \mathcal{E}_{n}(\{k_{j}\})|\psi_{A,B^{n}}\rangle,$$

$$\Leftarrow h\vec{A}\otimes_{p}\vec{A} = h\vec{B}\otimes_{p}\vec{B} = 0$$

$$h\vec{A}\otimes_{p}\vec{B} = -\vec{A}\otimes_{p}\vec{B} + \vec{B}\otimes_{p}\vec{A}$$

$$h\vec{B}\otimes_{p}\vec{A} = \vec{A}\otimes\vec{B} - \vec{B}\otimes_{p}\vec{A}$$

Embedded s=1/2 XXX spectrum (not equally-spaced) ⇒ Interacting quasiparticles

THERSITY OF THE STATE OF THE ST

Beyond rSGA

Perturbed XXC model [CM (2024)]

$$H = \sum_{x=1}^{N} \mathbf{1} \otimes \cdots \otimes \underset{x,x+1}{h} \otimes \cdots \otimes \mathbf{1}$$

$$h = \sum_{a \in \{0,2\}} (|a1\rangle\langle a1| + |1a\rangle\langle 1a| + |a1\rangle\langle 1a| + |1a\rangle\langle a1|) + \alpha(|00\rangle\langle 00| + |22\rangle\langle 22|)$$

XXC model (integrable)

• $W = \operatorname{span} \{ |\psi_{A,B^n} \rangle \}_n$ is solvable subspace of H.

$$H|\psi_{A,B^n}\rangle = \mathcal{E}_n(\{k_j\})|\psi_{A,B^n}\rangle,$$

$$\Leftarrow h\vec{A} \otimes_{p} \vec{A} = h\vec{B} \otimes_{p} \vec{B} = 0 h\vec{A} \otimes_{p} \vec{B} = -\vec{A} \otimes_{p} \vec{B} + \vec{B} \otimes_{p} \vec{A} h\vec{B} \otimes_{p} \vec{A} = \vec{A} \otimes \vec{B} - \vec{B} \otimes_{p} \vec{A}$$

 $\mathcal{E}_n(\{k_j\}) = \left(2\sum_{j=1}^n \cos k_j - \frac{n}{2}\right)$ Embedded s=1/2 XXX spectrum (not equally-spaced) \Rightarrow Interacting quasiparticles

Why? \Rightarrow Hilbert-space fragmentation

Hilbert-space fragmentation (HSF; Krylov restricted thermalization) [Retort et al. (2003), Pai et al. (2019)]

$$\mathcal{H} = \bigoplus_{\alpha=1}^{r} W_{\alpha}, \quad W_{\alpha} = \operatorname{span} \{ H^{n_{\alpha}} | \psi_{\alpha} \rangle \}_{n_{\alpha}}$$

- Exponentially-many block diagonal structure.
- Fragmented subspaces are not distinguished by obvious local symmetries of *H*.
- Solvable subspaces are sometimes embedded (not always).

• Simple example: Sato's model [Sato (1995)] $H = \sum_{x=1}^{N} \mathbf{1} \otimes \cdots \otimes \lim_{x,x+1} \otimes \cdots \otimes \mathbf{1}$ $h = \sum_{a,b=0}^{2s} f(a,b) |ab\rangle \langle ba| + \sum_{r=0}^{2s} c(r) |rr\rangle \langle rr| + \sum_{\substack{a,b=0\\a \neq b}}^{2s} g(a,b) |ab\rangle \langle ab|$

Non-integrable arbitrary spin-s chain.

The interactions only exchange the neighboring configurations.

$$\begin{aligned} H: |a_1, a_2, a_3, a_4\rangle \mapsto &f(a_1, a_2) |a_2, a_1, a_3, a_4\rangle + f(a_2, a_3) |a_1, a_3, a_2, a_4\rangle \\ &+ f(a_3, a_4) |a_1, a_2, a_4, a_3\rangle + f(a_4, a_1) |a_4, a_2, a_3, a_1\rangle \\ &+ (g(a_1, a_2) + g(a_2, a_3) + g(a_3, a_4) + g(a_4, a_1)) |a_1, a_2, a_3, a_4\rangle \end{aligned}$$

Simple example: Sato's model [Sato (1995)]

$$H = \sum_{\substack{x=1\\a\neq b}} \mathbf{1} \otimes \dots \otimes \lim_{\substack{x,x+1\\a\neq b}} \otimes \dots \otimes \mathbf{1}$$
$$h = \sum_{\substack{a,b=0\\a\neq b}}^{2s} f(a,b) |ab\rangle \langle ba| + \sum_{\substack{r=0\\r=0}}^{2s} c(r) |rr\rangle \langle rr| + \sum_{\substack{a,b=0\\a\neq b}}^{2s} g(a,b) |ab\rangle \langle ab|$$

Non-integrable arbitrary spin-s chain.

■ The entries in each configuration never change by the interactions ⇒ Hilbert-space fragmentation (according to multisets of configuration entries). $|m_1, m_2, \dots, m_N\rangle$ $|m_2, m_1, \dots, m_N\rangle$ \vdots $|\sigma(m_1), \sigma(m_2), \dots, \sigma(m_N)\rangle, \quad \sigma \in \mathfrak{S}_N$

Simple example: Sato's model [Sato (1995)]

$$H = \sum_{\substack{x=1\\a\neq b}}^{N} \mathbf{1} \otimes \dots \otimes \lim_{\substack{x,x+1\\a\neq b}} \mathbf{1} \otimes \dots \otimes \mathbf{1}$$
$$h = \sum_{\substack{a,b=0\\a\neq b}}^{2s} f(a,b) |ab\rangle \langle ba| + \sum_{\substack{r=0\\r=0}}^{2s} c(r) |rr\rangle \langle rr| + \sum_{\substack{a,b=0\\a\neq b}}^{2s} g(a,b) |ab\rangle \langle ab|$$

Non-integrable arbitrary spin-s chain.

The model is integrable in the subspaces given by

$$V^{\sigma} = (\operatorname{span}\{|0\rangle, |\sigma\rangle\})^{\otimes N}, \quad \sigma = 1, \dots, 2s.$$

 $\begin{array}{l} |0\rangle \leftrightarrow |\uparrow\rangle : \text{Vacuum} \\ |\sigma\rangle \leftrightarrow |\downarrow\rangle : \text{Particles} \end{array} \xrightarrow{\hspace{1cm}} H\big|_{W} \sim H_{\text{XXZ}} \text{ with } \Delta_{\sigma,0} = (g(0,\sigma) + g(\sigma,0) - c(\sigma))/f(\sigma,0) \\ \text{Anisotropy depending on } \sigma. \end{array}$

HI 150 DE NOR

Embedded Integrable Models in HSF

Example: XXC model [Maassarani (1997, 1999), de Leeuw et al. (2023)]

$$H_{XXC} = \sum_{j=1}^{N} \mathbf{1} \otimes \cdots \otimes h_{j,j+1}^{XXC} \otimes \cdots \otimes \mathbf{1}$$
$$h^{XXC} = \cosh \eta \left(\sum_{s,s' \in \{0,2\}} |ss'\rangle \langle ss'| + |11\rangle \langle 11| \right) + \sum_{s \in \{0,2\}} (|s1\rangle \langle 1s| + |1s\rangle \langle s1|)$$

Integrable spin-1 chain. $R(\lambda) = \sum_{a,a'=0,2} \left\{ (|aa'\rangle\langle a'a| + |11\rangle\langle 11|) \sinh(\lambda + \eta) + (|a1\rangle\langle 1a| + |1a\rangle\langle a1|) \sinh\eta + (x_a|a1\rangle\langle a1| + x_a^{-1}|1a\rangle\langle 1a|) \sinh\lambda \right\}$ $H_{XXC} \xrightarrow{\longmapsto}_{\mathcal{H}\setminus\{|0\rangle,|2\rangle\}^N} H_{XXZ} \quad \begin{array}{c} \text{becomes XXZ model} \\ \text{by identifying } |0\rangle \& |2\rangle. \end{array}$ $(\lambda, x_a \in \mathbb{C})$

Embedded Integrable Models in HSF

Example: XXC model [Maassarani (1997, 1999), de Leeuw et al. (2023)]

$$H_{XXC} = \sum_{j=1}^{N} \mathbf{1} \otimes \dots \otimes h_{j,j+1}^{XXC} \otimes \dots \otimes \mathbf{1}$$
$$h^{XXC} = \cosh \eta \left(\sum_{s,s' \in \{0,2\}} |ss'\rangle \langle ss'| + |11\rangle \langle 11| \right) + \sum_{s \in \{0,2\}} \underline{(|s1\rangle \langle 1s| + |1s\rangle \langle s1|)}$$
exchange terms

The configuration of 0 & 2 never changes by the interactions.

"Irreducible string (IS)" [Dhar et al. (1993), Barma et al (1994), Menon et al. (1997), Dhar (1997)]

Embedded Integrable Models in HSF

Example: perturbed XXC model [CM (2024), in preparation with KPP] $H_{XXC}^{\text{pol}} = \sum_{j=1}^{N} \left(h_{j,j+1}^{XXC} + h_{j,j+1}^{\text{pol}} \right)$ $P_{\text{pol}}^{(0)}, P_{\text{pol}}^{(2)}$ $h^{\text{pol}} = \alpha_{\text{d1}} |02\rangle \langle 02| + \alpha_{\text{d2}} |20\rangle \langle 20| + \alpha_{\text{o1}} |02\rangle \langle 20| + \alpha_{\text{o2}} |20\rangle \langle 02| \longmapsto 0 \quad : \text{vanishing terms}$ $h_{j,j+1}^{XXC} + h_{j,j+1}^{\text{pol}} \underset{P_{\text{pol}}\mathcal{H} \setminus \{|0\rangle, |2\rangle\}^{N}}{\longmapsto} \sigma_{j}^{+} \sigma_{j+1}^{-} + \sigma_{j}^{-} \sigma_{j+1}^{+} + \frac{1}{2} (\cosh \eta) (\sigma_{j}^{z} \sigma_{j+1}^{z}) + \frac{1}{2} \cosh \eta$ s = 1/2 XXZ model!

Projector onto the fully-polarized IS ... 0000 ... (resp... 2222...)

$$P_{\rm pol}^{(0)} = \bigotimes_{j=1}^{N} (|0\rangle\langle 0| + |1\rangle\langle 1|)_j \quad \text{(resp. } P_{\rm pol}^{(2)} = \bigotimes_{j=1}^{N} (|2\rangle\langle 2| + |1\rangle\langle 1|))_j \text{)}$$

THERSITY OF THE SUMERSITY OF THE SUMERSI

Embedded Integrable Models in HSF

Example: perturbed XXC model [CM-Tsuji (2024), in preparation with KPP] $H_{XXC}^{\text{alt}} = \sum_{j=1}^{N} \left(h_{j,j+1}^{XXC} + h_{j,j+1}^{\text{alt}} \right)$ $h^{\text{alt}} = \beta_{\text{d1}} |00\rangle \langle 00| + \beta_{\text{d2}} |22\rangle \langle 22| + \beta_{\text{o1}} |00\rangle \langle 22| + \beta_{\text{o2}} |22\rangle \langle 00| \xrightarrow{P_{\text{alt}}} 0 : \text{vanishing terms}$ $h_{j,j+1}^{\text{XXC}} + h_{j,j+1}^{\text{alt}} \xrightarrow{P_{\text{alt}}} \eta_{j+1} + \sigma_{j}^{-} \sigma_{j+1}^{+} + \eta_{j}^{-} \cosh \eta \left(\sigma_{j}^{z} \sigma_{j+1}^{z} \right) + \frac{1}{2} \cosh \eta$ s=1/2 XXZ model!

• Projector onto the alternating IS ... 0202... $P_{\text{alt}} = \text{tr}_a \otimes_{j=1}^N \text{diag.}(\sigma_a^+, \mathbf{1}_a, \sigma_a^-)_j - \otimes_{j=1}^N (|1\rangle\langle 1|)_j$

Partial solvability in open quantum systems?

Outline

- Definition of partial solvability
- Thermalization & quantum many-body scars (QMBS)
- Closed partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Open partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Concluding remarks

Beyond Isolated Quantum Systems

Lindblad master equation

$$\begin{split} \frac{d}{dt}\rho(t) &= \mathcal{L}(\rho(t)) , \quad \mathcal{L}(\rho) = -i[H, \ \rho] + \sum_{\mu} \varepsilon_{\mu} \mathcal{D}_{\mu}(\rho) \\ & \clubsuit \\ \end{split} \\ \text{Steady state} \\ \text{as the fixed point of } \mathcal{L} \\ \end{split} \\ \mathcal{D}_{\mu}(\rho) &= 2A_{\mu}\rho A_{\mu}^{\dagger} - \{A_{\mu}^{\dagger}A_{\mu}, \ \rho\} : \texttt{Dissipation terms} \\ & \texttt{Quantum jump operator} \end{split}$$

 Is the most general CPTP map under the assumptions: Markovian time evolution & Direct product initial state.

Beyond Isolated Quantum Systems

Lindblad master equation

$$\begin{split} \frac{d}{dt}\rho(t) &= \mathcal{L}(\rho(t)) , \quad \mathcal{L}(\rho) = -i[H, \ \rho] + \sum_{\mu} \varepsilon_{\mu} \mathcal{D}_{\mu}(\rho) \\ \mathbf{\nabla} \\ \text{Steady state} \\ \text{as the fixed point of } \mathcal{L} \\ \end{split}$$

Sometimes has the exactly solvable steady state.

	bulk dissipators	boundary dissipators
completely solvable	✓ [Prosen (2008) et al.]	✓ [Paletta et al. (2024)]
steady state solvable	\checkmark	✓ [Prosen (2013)]
partially solvable	✓ [Tindall et al. (2020)]	our model [CM-Tsuji (2024)

Can partial solvability be robust against the boundary dissipators?

System coupled to boundary dissipators

 $\mathcal{L}(\rho) = -i[H, \rho] + \sum_{\mu} \gamma_{\mu} \mathcal{D}_{\mu}(\rho)$ $\mathcal{D}_{\mu}(\rho) = 2A_{\mu}\rho A_{\mu}^{\dagger} - \{A_{\mu}^{\dagger}A_{\mu}, \rho\}$

Thermofield double vector expression

$$\rho = \sum_{m,n} \rho_{m,n} |m\rangle \langle n| \mapsto \sum_{m,n} \rho_{m,n} |m\rangle \otimes |n\rangle = |\rho\rangle\rangle$$

Evolution of the density matrix
$$\frac{d}{dt}|\rho(t)\rangle = -i\widetilde{H}|\rho(t)\rangle \in \mathcal{H} \otimes \mathcal{H}^*$$

$$\widetilde{H} = H \otimes \mathbf{1} - \mathbf{1} \otimes {}^{t}H + i\sum_{\alpha} \gamma_{\alpha} \left((A_{\alpha} \otimes A_{\alpha}^*) - \frac{1}{2} (A_{\alpha}^{\dagger}A_{\alpha} \otimes \mathbf{1} + \mathbf{1} \otimes {}^{t}A_{\alpha}A_{\alpha}^*) \right) : \text{Non-Hermitian}$$
effective Hamiltonian

- Example: XXC Hamiltonian coupled to boundary dissipators [CM-Tsuji (2024)]
 - Spin-1 XXC Hamiltonian ⇒ HSF by config. of 0 & 2
 - Boundary dissipators \Rightarrow violate integrability $A_{L,+} = (S_1^+)^2, \quad A_{L,-} = (S_1^-)^2, \quad A_{R,+} = (S_N^+)^2, \quad A_{R,-} = (S_N^-)^2$
 - Effective non-Hermitian Hamiltonian

$$\widetilde{H}_{XXC} = \sum_{n=1}^{N-1} h_{n,n+1}^{(XXC)} + h_{N,N+1}^{(b,R)} - \sum_{n=N+1}^{2N} h_{n,n+1}^{(XXC)} + h_{2N,1}^{(b,L)}$$

 \Rightarrow Two XXC chains coupled at the boundaries.

Example: XXC Hamiltonian coupled to boundary dissipators [CM-Tsuji (2024)]

• Effective non-Hermitian Hamiltonian

$$h^{(b,\alpha)} = i\gamma_{\alpha,+} \left(|00\rangle\langle 22| - \frac{1}{2}(|2\rangle\langle 2| \otimes \mathbf{1} + \mathbf{1} \otimes |2\rangle\langle 2|) \right)$$

$$+ i\gamma_{\alpha,-} \left(|22\rangle\langle 00| - \frac{1}{2}(|0\rangle\langle 0| \otimes \mathbf{1} + \mathbf{1} \otimes |0\rangle\langle 0|) \right), \quad \alpha \in \{\mathbf{R}, \mathbf{L}\} - h^{(XXC)}_{2N-1,2N} - h^{(XXC)}_{2N-2,2N-1} \cdots - h^{(XXC)}_{N,N+1}$$
Two terms irrelevant in the subspace of alternating irreducible strings

Two terms irrelevant in the subspace of alternating irreducible strings.

 \Rightarrow Two decoupled XXC chains

$$\widetilde{H}_{XXC}\big|_{W_{\text{alt}}} = H_{XXC}^{(+)} \otimes \mathbf{1} - \mathbf{1} \otimes H_{XXC}^{(-)}$$

The other terms work as the (imaginary) boundary magnetic fields.

 $h_{1,2}^{(XXC)} h_{2,2}^{(XXC)} \dots h_{N-1,N}^{(XXC)}$

the alternating subspace)

- Example: XXC Hamiltonian coupled to boundary dissipators [CM-Tsuji (2024)]
 - Projected effective non-Hermitian Hamiltonian

$$\widetilde{H}_{XXC}\big|_{W_{\text{alt}}} = H_{XXC}^{(+)} \otimes \mathbf{1} - \mathbf{1} \otimes H_{XXC}^{(-)}$$

becomes integrable when

$$\gamma_{\mathrm{L},+} = \gamma_{\mathrm{L},-}, \quad \gamma_{\mathrm{R},+} = \gamma_{\mathrm{R},-}$$

 Mapped to s=1/2 XXZ spin chain with diagonal boundaries

 $\begin{array}{ccc} H_{XXC}^{(\pm)}(\gamma_{\mathrm{L}},\gamma_{\mathrm{R}}) & \longmapsto \\ & & & \\ \mathbb{C}^{3N} \setminus \{|0\rangle,|2\rangle\}^{N} \end{array} H_{XXZ}^{(\pm)}(\gamma_{\mathrm{L}},\gamma_{\mathrm{R}}) \\ \end{array}$ Spectrum derived by Bethe ansatz for spin-1/2 XXZ!!

- Example: XXC Hamiltonian coupled to boundary dissipators [CM-Tsuji (2024)]
 - Eigenstates of effective Hamiltonian

$$\begin{split} \widetilde{H} & \longmapsto_{P_{\text{alt}} \mathcal{H} \setminus \{|0\rangle, |2\rangle\}^{N}} H_{XXZ}^{(+)}(\gamma_{\text{L}}, \gamma_{\text{R}}) \otimes \mathbf{1} - \mathbf{1} \otimes H_{XXZ}^{(-)}(\gamma_{\text{R}}, \gamma_{\text{L}}) \\ H_{XXZ}^{(+)}(\gamma_{\text{L}}, \gamma_{\text{R}}) &= -\frac{i}{4} \gamma_{\text{L}} \sigma_{1}^{z} + \sum_{j=1}^{N-1} \left(\sigma_{j}^{+} \sigma_{j+1}^{-} + \sigma_{j}^{-} \sigma_{j+1}^{+} + \frac{1}{2} \cosh \eta \sigma_{j}^{z} \sigma_{j+1}^{z} \right) - \frac{i}{4} \gamma_{\text{R}} \sigma_{N}^{z} \\ H_{XXZ}^{(-)}(\gamma_{\text{R}}, \gamma_{\text{L}}) &= -\frac{i}{4} \gamma_{\text{R}} \sigma_{N+1}^{z} - \sum_{j=N+1}^{2N-1} \left(\sigma_{j}^{+} \sigma_{j+1}^{-} + \sigma_{j}^{-} \sigma_{j+1}^{+} + \frac{1}{2} \cosh \eta \sigma_{j}^{z} \sigma_{j+1}^{z} \right) - \frac{i}{4} \gamma_{\text{L}} \sigma_{2N}^{z} \\ N = 2, \eta = \frac{i\pi}{3} \\ \gamma_{\text{L}} = 0.4, \gamma_{\text{R}} = 0.3 \\ \hline full \text{ eigenvalues of } \mathcal{L}_{XXC} \\ \bullet \text{ full eigenvalues of } \mathcal{L}_{XXC} \\ \bullet \text{ in the solvable subspace} \\ \end{array}$$

- System coupled to boundary dissipators
 - $\mathcal{L}(\rho) = -i[H, \rho] + \sum_{\mu} \gamma_{\mu} \mathcal{D}_{\mu}(\rho)$ $\mathcal{D}_{\mu}(\rho) = 2A_{\mu}\rho A_{\mu}^{\dagger} \{A_{\mu}^{\dagger}A_{\mu}, \rho\}$

- System with rSGA $[H, Q^{\dagger}] - \mathcal{E}Q^{\dagger}|_{W} = 0, \quad W = \operatorname{span}\{(Q^{\dagger})^{n}|\psi_{A}\rangle\}_{n}$ $Q^{\dagger} = \sum_{x} e^{i\pi x} q_{x}^{\dagger} \qquad \Rightarrow \text{Quasiparticle excitations carrying momentum }\pi$
- Quasiparticle baths at the edges $A_{\rm L} = q_1^{\dagger}, \quad A_{\rm R} = q_N^{\dagger} \Rightarrow$ Doping quasiparticles at the boundaries Fully occupied steady state?

Example: s=1 spin chains with rSGA + spin-2 magnon baths

• s=1 spin chain with rSGA (e.g. AKLT model)

$$[H, Q^{\dagger}] - \mathcal{E}Q^{\dagger}|_{W^{(v_{\mathrm{R}}, v_{\mathrm{L}})}} = 0, \quad Q^{\dagger} := \sum_{x=1}^{N} e^{i\pi x} (S_{x}^{+})^{2}$$

$$W^{(v_{\mathrm{L}}, v_{\mathrm{R}})} = \operatorname{span}\{(Q^{\dagger})^{n}|\psi_{A}^{(v_{\mathrm{L}}, v_{\mathrm{R}})}\rangle\}_{n}$$

$$|\psi_{A}^{(v_{\mathrm{L}}, v_{\mathrm{R}})}\rangle = \langle v_{\mathrm{L}}|\vec{A} \otimes_{p} \cdots \otimes_{p} \vec{A}|v_{\mathrm{R}}\rangle, \qquad \vec{A} = \begin{pmatrix} a_{0}\sigma^{+}\\ a_{1}\sigma^{z}\\ a_{2}\sigma^{-} \end{pmatrix}, \quad a_{0}, a_{1}, a_{2} \in \mathbb{C}$$

$$\underset{\in V_{a} = \operatorname{span}\{|0\rangle, |1\rangle\}$$

 \Rightarrow Four degenerate zero-energy states.

■ Spin-2 magnon baths at the edges $A_{\rm L} = (S_1^+)^2, \quad A_{\rm R} = (S_N^+)^2 \Rightarrow \text{Doping spin-2 magnons at the boundaries}$

- Example: s=1 spin chains with rSGA + spin-2 magnon baths [CM-Tsuji (2024)]
 - The subspace $W^{(0,1)}$ consists of the dark states.
 - $[H, (Q^{\dagger})^{n} | \psi_{A}^{(0,1)} \rangle \langle \psi_{A}^{(0,1)} | Q^{n}] = 0 \qquad \Rightarrow \text{Eigenst}$
 - \Rightarrow Eigenstates of the Hamiltonian
 - $\mathcal{D}_{(S_1^+)^2} \left((Q^\dagger)^n | \psi_A^{(0,1)} \rangle \langle \psi_A^{(0,1)} | Q^n \right) = 0$ $\mathcal{D}_{(S_N^+)^2} \left((Q^\dagger)^n | \psi_A^{(0,1)} \rangle \langle \psi_A^{(0,1)} | Q^n \right) = 0$
- ⇒ Dissipators are irrelevant.
 (Robust eigenstates against boundary dissipators)
- Any density matrix diagonal in W^(0,1) becomes the steady states.

$$\mathcal{L}\Big(\sum_{n} p_{nn} (Q^{\dagger})^{n} |\psi_{A}^{(0,1)}\rangle \langle \psi_{A}^{(0,1)} | Q^{n}\Big) = 0, \quad \sum_{n} p_{nn} = 1, \quad p_{nn} > 0, \, \forall n$$

• The ratio of the number of trajectories for each S^z .

(Left) The initial state does not overlap with solvable states \Rightarrow Dominated by states with large S^z . (Right) The initial state does overlap with solvable states \Rightarrow States with small S^z survive!

- Example: s=1 spin chains with rSGA + spin-2 magnon baths [CM-Tsuji (2024)]
 - $\begin{array}{ll} \bullet \quad & \text{Other solvable eigenmodes in } W^{(0,1)} \otimes (W^{(0,1)})^* \\ & [H, \ (Q^{\dagger})^m |\psi_A^{(0,1)} \rangle \langle \psi_A^{(0,1)} | Q^n] = \sum_{n,m} (m-n) \mathcal{E}(Q^{\dagger})^m |\psi_A^{(0,1)} \rangle \langle \psi_A^{(0,1)} | Q^n \end{array} \Rightarrow \\ & \text{Eigenstates of the Hamiltonian} \\ & \mathcal{D}_{(S_1^+)^2} \big((Q^{\dagger})^m |\psi_A^{(0,1)} \rangle \langle \psi_A^{(0,1)} | Q^n \big) = 0 & \Rightarrow \\ & \mathcal{D}_{(S_N^+)^2} \big((Q^{\dagger})^m |\psi_A^{(0,1)} \rangle \langle \psi_A^{(0,1)} | Q^n \big) = 0 \end{array} \Rightarrow \\ \begin{array}{l} \text{Dissipators are irrelevant.} \\ & (\text{Robust eigenstates against boundary dissipators)} \end{array} \end{array}$
 - Persistent oscillation emerges.

$$|\Psi(t=0)\rangle = \sum_{n < m} a_n (Q^{\dagger})^n |\psi_A^{(0,1)}\rangle \in W^{(0,1)}$$

$$\Rightarrow \lim_{t \to \infty} \rho(t) = \mathop{e}^{n \mathcal{L}t} \rho(0) = \sum_{n,m} e^{-i(m-n)\mathcal{E}t} (Q^{\dagger})^m |\psi_A^{(0,1)}\rangle \langle \psi_A^{(0,1)} | Q^n$$

$$\lim_{t \to \infty} \langle O(t)\rangle = \sum_{n < m} 2 \cos((m-n)\mathcal{E}t) a_m a_n \operatorname{Re} O_{nm}$$

Time evolution of the local magnetization starting from a nearly Neel state at $\gamma_{\rm L} = \gamma_{\rm R} = 1$.

(Left) The initial state does not overlap with solvable states \Rightarrow No oscillations (Right) The initial state does overlap with solvable states \Rightarrow Long-lived oscillations emerge!

Outline

- What is "partial solvability"?
 - Definition of partial solvability
 - Thermalization & quantum many-body scars (QMBS)
- Closed partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Open partially solvable models
 - Restricted spectrum generating algebra (rSGA)
 - Hilbert space fragmentation (HSF)
- Concluding remarks

Concluding remarks

- can have solvable eigenmodes inherited from the partially solvable system Hamiltonians.
- reach a non-trivial steady state or never reach a steady state by exhibiting longlived oscillations.

Future works

- From the phenomenological viewpoints,
 - Can we observe the KPZ universality class in the integrable subspace?
 ⇒ Robustness of the KPZ universality class against boundary conditions.
 - Overlap between the initial state & solvable eigenmodes?
 ⇒ Needs determinant formula for boundary cases.
- From the mathphys aspects,
 - What is the algebraic structure behind the XXC & related models? [de Leeuw et al. (2023)]
 - What are the conserved quantities for partially solvable models?
 - Is it possible to extend the notion of partial integrability to QFT models? Thank you for listening!