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1. Review of the work by Heisenberg, Euler, Schwinger 

E

B

Free Dirac fermions in static electro-magnetic fields



threshold (critical) field

= Schwinger limit

Heisenberg-Euler’s work (1936)

Heisenberg, Euler (1936)

Dirac, sea (1928)

Weisskopf (1936) 

+-

pair creation of electron-positrons



Schwinger’s work (1951) 



Schwinger’s work (1951) 

One loop expression of the effective Lagrangian (s: proper time) 

Imaginary part obtained from singularity in s ∈ C

F=eE



Schwinger’s work

Heisenberg-Euler Effective Lagrangian
Schwinger 1951

=
generating function of nonlinear responses

HE

+ - + -

+ -
+ -

E

Polarization induced by E

HE



Berry phase theory of Polarization

R. Resta, Phys. Rev. Lett. 80, 1800 (1998)

King-Smith, Vanderbilt, Phys. Rev. B. 47, 1651 (1993)

• Topological index (P=0,1/2 for lattice with inv. sym.)
• Quantum metric 
• Relation to LSM theorem

twist operator

Berry phase

Can we relate this to Schwinger’s vacuum polarization?



HE-Effective Lagrangian from groundstate amplitude

ground statetime evolution opt.adiabatic ground state

DC E-field in the potential gauge : position operator 

Oka, Aoki 2005

• Generically, HE-Lagrangian is related to the groundstate amplitude  (: parameter)

(interaction picture)

• Adiabatic limit (fixed tE=2/L) recovers
HE

quench



3+1 D Dirac model       Landau Zener problem

Recovering Schwinger’s result

+

-

Landau 1932
Zener 1932

 =



+

-

Agrees with Schwinger 1951 after k-integral

Recovering Schwinger’s result

Results of the Landau-Zener model  (Landau’s textbook) 

Stokes phase
(Nonadiabatic Berry phase)

Oka, Aoki 2005



Results of the Landau-Zener model  (Landau’s textbook) 

+

-

Agrees with Schwinger 1951 after k-integral

Stokes phase
(Nonadiabatic Berry phase)

Recovering Schwinger’s result

Can we calculate p? 

Oka, Aoki 2005



Dykhne JETP (1962), Daviis, Pechukas, J.Chem.Phys. (1976)

Imaginary time method (Landau-Dykhne theory, DDP theory)

t* ∈ C: exceptional point

Tunneling probability

Matrix version of WKB approximation for 2-level systems

proof: saddle point approximation of the transition amplitude  

Fukushima, Shimazaki ’19 extension



Schwinger Phys. Rev.82, (1951) E

kx-Ax

Schwinger mechanism (tunneling problem) Dirac model with complex gauge field

+

-

exceptional point

Two eigenstates
becomes the same

Hatano-Nelson-like systemImaginary 
time method

total P~



kx

Summary of part 1

+

-

E

Heisenberg-Euler problem Landau-Zener model 

Oka, Aoki 2005

Dirac model with complex gauge field

k, spin
conservation

Imaginary time method

HE effective Lagrangian

=(polarization)+I (tunneling probability)

(exact only for LZ model)

+ -

E

EPR pair
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Tunneling breakdown from a SPT phase

Driven S=1 Heisenberg model

Okazaki, Okumura, Takayoshi, TO, arXiv ’24 

F

(picture accurate at AKLT point)

L=8

Spin current

L=8

Bloch oscillation
=2

• Start from Valence Bond Solid (VBS) ground state

• F (= 
𝜕 𝐵𝑧

𝜕𝑥
)  is the spin electric field 

Koichi Okazaki



Tunneling breakdown from a SPT phase

Okazaki, Okumura, Takayoshi, TO, arXiv ’24 

F

(picture accurate at AKLT point)

L=8

Spin current

L=8

Bloch oscillation
=2

• Start from Valence Bond Solid (VBS) ground state

• F (= 
𝜕 𝐵𝑧

𝜕𝑥
)  is the spin electric field 

P

1-P

Let’s calculate P

Driven S=1 Heisenberg modelKoichi Okazaki



Heisenberg-Euler problem Landau-Zener model 

Dirac model with complex gauge field

k, spin

Imaginary time method

Previously we had

Schwinger Phys. Rev.82, (1951) 

(exact only for LZ model)

total P~

kx

+

-

E



Driven S=1 Heisenberg model

Imaginary time method

Can we do the following?

(exact only for LZ model)

Non-Hermitian S=1 Heisenberg model

Let’s try

?



Non-Hermitian S=1 Heisenberg model

P

1-P

ground state

triplon & anti-triplon pair ? 

*not conclusive



P

1-P

DDP (imaginary time)

weak field

strong field
Floquet-Magnus

Exceptional point is formed between 0 and 1 states,
and the tunneling is well-described by imaginary time method.

Non-Hermitian S=1 Heisenberg model



Remark: 1D Hubbard model Oka, Aoki 2010, Oka 2012

Momentum resolved dh-pair creation rate

E: d-h energy, : complex path, F: Jacobian (E-field)

Imaginary time method + Bethe ansatz

Ovchinikov JETP, 30 (1970), Coll, PRB 9 (1974),

Takahashi, Prog. Theor. Phys. 47 (1972)

Woynarovich, J.Phys.C, (1982)

String states

Fukui-Kawakami (1998), Nakamura-Hatano (2006)

Non-Hermitian extension

Can study effects of DC, AC, or pulse fields

Yamakawa et al. (Okamoto gr.) 2017, Li et al. (Hsieh gr.) 2022Experiments
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E

B

Free Dirac fermions in electro-magnetic fields

Part 3: Floquet state in AC-magnetic fields

Heisenberg-Euler 1936

TO-Aoki 2009

Floquet topological phases (FTI, FATI,..)

Kitamura-TO 2024

-Landau levels
chiral anomaly induced heterodyne effect

* non-relativistic TO-Bucciantini 2016

static

circularly pol.

AC magnetic field



1. Nonrelativistic particle 2. 2D Dirac particle

Q. Can we get Landau levels from oscillating magnetic fields?

z



1. Nonrelativistic particle 2. 2D Dirac particle

Q. Can we get Landau levels from oscillating magnetic fields?

z

TO-Bucciantini 2016

right → left → right → left

Period T



1. Nonrelativistic particle 2. 2D Dirac particle

Q. Can we get Landau levels from oscillating magnetic fields?

Kitamura, TO, arXiv ’24 

electron → hole → electron → hole

Period T

z

right → left → right → left

Period T

TO-Bucciantini 2016

upper → lower → upper → lower



“Kapitza‘s pendulum”  (youtube)

Classical Floquet state
Review of Floquet theory (1/6)



“Dynamic localization”

Dunlap and Kenkre ‘86
Quantum Floquet state

momentum space

“time average” = Effective Floquet Hamiltonian

Review of Floquet theory (2/6)



“weird helicopter” (youtube) Stroboscopic motion

Micromotion

t: 0→T

t = 0, T, 2T, ...

• Floquet state

Floquet theory

slow

fast

• Almost like a static system
• We can define (quasi)-energy and state

Review of Floquet theory (3/6)

Effective Floquet Hamiltonian

= time average

+ effective terms



Stroboscopic motion

Micromotion

t: 0→T

t = 0, T, 2T, ...

Effective Floquet Hamiltonian

• Floquet state

Floquet theory

= time average

+ effective terms

slow

fast

• Almost like a static system
• We can define (quasi)-energy and state

Gedik @MIT, Science ’13

2D Dirac + circularly pol. laser
Review of Floquet theory (3/6)

Spectrum of HF

is observable



Theory of Floquet states

Define HF from 1step evolution

Time periodic systems

Define Kick operator V(t)

time evolution

Floquet theorem

proof:

step 1. step 2. 

time ordering

fast slow

time periodic

Review of Floquet theory (4/6)



How can we calculate Floquet states?

3. High frequency expansion  

(1/ expansion, Floquet-Magnus expansion)

Eckardt, Rev. Mod. Phys. 89 2017
TO, Kitamura Ann. Rev. CMP 2019

Rudner, Lindner, Nat. Rev. Phys. 2 2020

Review of Floquet theory (5/6)

1. Solve the Schrodinger equation and obtain U

2. Sambe’s space-time picture (Move to Fourier space)



On-chip THz current
laser

Application to Quantum Electronics

Floquet-Andreev bound state

Sein Park,.., Gil Young Cho, Gil-Ho Lee, Nature ‘22

Laser induced Hall current

Microwave emitted 

from an antenna

in the cryostat

Review of Floquet theory (6/6)

Mciver, Cavalleri et al. Nat. Phys. ‘19



time dependent magnetic field

2D Dirac electron in oscillating B field

z

Dirac equation

=
graphene, surface of 3D TI, …



honeycomb, zigzag edge=0.6, B/a=0.000,  Ex=0.0

Spectrum of 

ky



honeycomb, zigzag edge=0.6, B/a=0.0010,  Ex=0.0

ky

Spectrum of 



honeycomb, zigzag edge=0.6, B/a=0.0020,  Ex=0.0

ky

Spectrum of 



honeycomb, zigzag edge=0.6, B/a=0.0030,  Ex=0.0

ky

Spectrum of 



=0.6, B/a=0.0030,  Ex=0.0



−



Flat bands at =±/2

“-Landau levels”

Dirac node at =0

Spectrum of 





−



Effective Hamiltonian for the “-Landau levels”

rotating frame transformation

+ time average

Landau levels of 2D Dirac system

n=0
n=1

n=-1
“-flat band”

n=0
n=1

n=-1
“-flat band”

x

two n=0 states two n=1 states

||2

x x x

Degenerate flat bands protected by time-glide symmetry (Morimoto-Po-Vishwanath’17)

y

Fast motion

Slow motion





−



Effective Hamiltonian for the “-Landau levels”

rotating frame transformation

Landau levels of 2D Dirac system

n=0
n=1

n=-1
“-flat band”

n=0
n=1

n=-1
“-flat band”

x

two n=0 states two n=1 states

||2

x x x

The flat band is protected by time-glide symmetry (Morimoto-Po-Vishwanath’17)

Rabi-oscillation between electron and hole 0th LL

0LL of +B 0LL of -B 



2D Dirac electron in oscillating B and E fields

DC- homodyne current 



Heterodyne Hall effect (add B and E)

honeycomb, zigzag edge=0.6, B/a=0.0020,  Ex=0.20

ky



honeycomb, zigzag edge=0.6, B/a=0.0020,  Ex=0.20

ky

Heterodyne Hall effect (add B and E)



ky



−



Dirac node→chiral band

Many chiral bands

chiral bands at =±/2

“-Landau levels”

Nielsen-Ninomiya, Phys. Lett.’83

Floquet effective Ham.

~ 3D Weyl in “Beff” 



Chiral anomaly induced homodyne effect

The Floquet-CME behavior 

honeycomb lattice 2D Dirac (continuum model)

Sota Kitamura

(U-Tokyo) Fukushima-Kharzeev-Warringa ‘08
similar to 



P

1-P

Summary of part 2, 3

2. Tunneling breakdown from a SPT phase

• Information of tunneling 
in the non-Hermitian model

• Non-Hermitian MPS state

• Future: General topologically ordered state

3. Floquet state in AC-magnetic fields

• Landau-levels and chiral bands are formed

• Future: Disorder, interaction, fractional filling

DC- homodyne current 
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