## The formation of the Milky Way outer halo with PFS



Miho N. Ishigaki (Subaru Telescope/NAOJ )


# FY2023 "What is dark matter? - Comprehensive study of the huge discovery space in dark matter" March 6-7th, 2024, Yukawa Institute 

## This talk

- The Milky Way's outer halo: a laboratory of dark matter
- The importance of stellar chemical abundance:
- The timing and characteristics of past merger events
- Understanding the very first step of the structure formation in the universe

How does the Milky Way Galaxy look like?


## The new view of the Galaxy's stellar halo



Gaia + Wide-field imaging surveys


Bulge

Radially biased orbits of nearby halo stars



Stellar halogabundant stellar streams


## Next steps?

Quantitative comparisons between observations vs cosmological simulations at different phases of Galaxy formation
$\checkmark$ The non-spherical shape, e.g., triaxial, or a more complicated structure for the dark matter halo (e.g., the interaction with the Large Magellanic Cloud)
$\checkmark$ The timing and the mass distribution of dwarf galaxy mergers in the past
$\checkmark$ The very first stage of the structure formation, the nature of the first stars (Population III/Pop III stars)

Stellar chemical abundances provide crucial information

## Stellar chemical abundances as a probe of the Milky Way formation



## Next steps?

Quantitative comparison between observations vs cosmological simulations at different phases of Galaxy formation
« The non-spherical shape, e.g., triaxial, or a more complicated structure for the dark matter halo (e.g., the interaction with the Large Magellanic Cloud)
$\checkmark$ The timing and the mass distribution of dwarf galaxy mergers in the past
> The very first stage of the structure formation, the nature of the first stars (Population III/Pop III stars)
"Chemical tagging" helps to associate globular clusters with past accretion events

Malhan+22
$\begin{array}{lc}\text { Sky/distance distribution stellar streams from Gaia } & \mathrm{D}_{\odot} \\ {[\mathrm{kpc}]}\end{array}$


Extra-tidal structures in globular clusters using the metallicity-sensitive narrow-band filter

Globular clusters in the Milky Way halo

by P. Kuzma (NAOJ/JSPS fellow), 2018, MNRAS, 473, 2881


HSC-NB395 analysis of a globular cluster NGC 5466 by I. Ogami (Sokendai)


## Next steps?

Quantitative comparison between observations vs cosmological simulations at different phases of Galaxy formation
$\downarrow$ The non-spherical shape, e.g., triaxial, or a more complicated structure for the dark matter halo (e.g., the interaction with the Large Magellanic Cloud)
$\downarrow$ The timing and the mass distribution of dwarf galaxy mergers in the past
$\downarrow$ The very first stage of the structure formation, the nature of the first stars (Population III/Pop III stars)

## How can we study the first stage of the cosmic structure formation?



## Chemical enrichment by multiple first star's supernovae

The limitation in traditional approach

- The assumption that a single Pop III star's supernova enriches the subsequent generation of stars
- Free parameters in the models (mass, explosion energy, geometry, fallback, mixing)


Cosmological simulations predicts...

The first stars form in binaries/clusters

Clark+11, Greif+15, Hirano \& Bromm+17, Susa+19, Sharda+20, Sugimura+20

$$
\mathrm{t}_{\mathrm{sF}}+110 \text { years }
$$

Fourth star forms


The assumption about the mono-enrichment may bias the inference on the nature of the Pop III stars

## Discriminating mono- vs multi-enriched metal-poor stars with machine learning

- The use of multiple abundance ratios
- Training the model with theoretical supernova yields

Hartwig, MI, Kobayashi, Tominaga, \& Nomoto, 2023, ApJ, 946, 20


The first star's yield models of "mono-enriched" and "multi-enriched" scenarios


- Non-linear boundary
- Overlap of two classes


The classification by Support Vector Machine ("SVM")


Credit:: Alisneaky, Zirguezi @Wikipecia

The nature of mono-enriched stars based on chemical abundances of $\sim 400$ EMP stars

- The fraction of mono-enriched stars $\left(p_{\text {mono }}>0.5\right): 31.8 \% \pm 2.3 \%$
- Carbon-enriched ([C/Fe] > 0.7) stars : more likely classified as mono-enriched stars


More realistic yield models + statistical sample of extremely metal-poor stars $\Rightarrow$ Improve the classification accuracy

## The Milky Way's outer halo with Subaru/PFS



What has been overlooked in previous surveys?

- Tidal streams from recent accretion events
- Debris of a dwarf galaxy that has large orbital angular momentum
- Faintest satellite galaxies (the candidates of the first galaxy)

Prime Focus Spectrograph (PFS)


## Summary

- The Milky Way's outer halo: a laboratory of dark matter
- The importance of stellar chemical abundances:
- The timing and characteristics of past merger events:

- Subaru/HSC search for extra-tidal structures of the outer halo globular clusters $\Rightarrow$ associate each cluster with a past dwarf-galaxy accretion event
- Understanding the very first step of the structure formation in the universe

- The machine learning algorithm can classify EMP stars into mono- or

- Subaru/PFS survey (~2025) provides new insights into the formation of the Milky Way to test the nature of dark matter

