Multi-messenger constraints on asymmetric dark matter

Saikat Das

In collaboration with: Kohta Murase, Ayuki Kamada, Takumi Kuwahara, and Deheng Song

Yukawa Institute for Theoretical Physics, Kyoto University

Baryonic and dark matter

Dark matter and Baryon make up 27% and 4% of the total energy density of the Universe

 $\Omega_{\rm DM}h^2 \sim 0.14$ $\Omega_{\rm B}h^2 \sim 0.022$

• Present day mass density of DM is a factor of five higher than VM (Planck Collaboration, 2018)

 $\Omega_{DM}\simeq 5~\Omega_b$

⇒ strong connection between the physics and evolution of baryonic matter and dark matter

• Assuming (i) dark matter at the TeV scale $m_{\rm DM} \sim 0.1 - 1$ TeV (ii) produced thermally in the early Universe \implies cross-section of weak strength – **WIMPs** ($n_{\rm DM} \sim 10^{-3} n_B$)

• WIMP scenario – the similarity in abundance between DM and baryons then must be taken to be a coincidence – strongly constrained by direct and indirect detection bounds

Baryon - DM coincidence problem

If it were not for Baryogenesis...

• DM mass density can be explained by the WIMP mechanism

$$\Omega_{\rm DM} \propto m_{\rm DM} n_{\rm DM} \simeq 0.1 \times \left(\frac{10^{-9} \, {\rm GeV}^{-2}}{\langle \sigma v \rangle} \right) \tag{1}$$

⇒ observed density is explained by choosing appropriate mass and couplings

But...

Baryon density is too low due to its large annihilation cross-section

Visible matter at the current epoch is due to the baryon asymmetry of the Universe

$$\eta(b) = \frac{n_b - n_{\overline{b}}}{s} \simeq 10^{-10}$$

n = number density and *s* = entropy density (constant for isentropic expansion of the Universe)

Asymmetric dark matter

DM density at the current epoch is similarly due to DM particle-antiparticle asymmetry

 $m_{\rm DM} \sim 5 m_b \eta(b) / \eta(DM) \sim O(1) \, {\rm GeV}$

(2)

[Barr, Chivukula, Farhi (1990), D. B. Kaplan (1992), D. E. Kaplan, Luty and Zurek (2009)]

Two main mechanisms

Sharing:

– SM and DM sectors share a primordial asymmetry produced in an arbitrary sector

 Asymmetry is thermally distributed in the two sectors

– $\eta(DM)/\eta(B)$ is related to the degrees of freedom in the two sectors

Cogenesis:

 The asymmetries in the two sectors are produced by the same process.

– DM - SM interactions – out of thermal equilibrium

 $-\eta(DM)/\eta(B)$ depends on the branching ratio of the asymmetry

[Petraki & Volkas (2013), Zurek (2013)]

- Among various possibilities, ADM with the sharing mechanism through B-L connecting operators with thermal Leptogenesis is very well motivated !
 - B-L symmetry is well-motivated in the SM (softly broken)
 - Thermal Leptogenesis is very successful for the baryogenesis

Dark baryon and photon

We focus on models of composite ADM

- Large annihilation cross-section
- $m_{\rm DM} \sim O \sim 1$ GeV without fine-tuning
- · Models are rather complicated
- Entropy in the dark sector should be transferred to SM dark photons

Dark photon has kinetic mixing with SM photons

$$\mathcal{L}_{\mathcal{A}'-\mathcal{A}} = \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu}$$
(3)

- Composite ADM with dark photon [Ibe, Kamada, Kobayashi, Nakano (2018)]
 - dark matter = dark protons or dark neutrons ($m_{N'} \sim O(1)$ GeV) $p', \vec{p}', n', \vec{n}'$
 - dark baryons annihilate into dark pions ($m_{\pi'} \sim O(100)$ MeV -O(1) GeV) π', π'^+, π'^-
 - dark pions annihilate/decay into dark photons ($m_{\gamma'} < m_{\pi'} < m_{N'}$) γ'

** Thermal component does not annihilate directly into SM particles

Thus, the dark sector ends up with dark baryonic matter and dark photons due to the asymmetry

$$\Omega_{p'}:\Omega_{n'}\sim 1:1$$

Saikat Das (YITP)

4/10

- Dark photons eventually decay into pair of electrons or muons (Lifetime O(1) sec)
- Dark nucleon decays into anti-neutrinos (Lifetime ~ 10²⁴ s)

$$N' \rightarrow \pi' + \overline{\nu}$$
 (4)

$$\pi' \to \mathbf{A}' \mathbf{A}'^{(*)} \to \mathbf{e}^+ \mathbf{e}^- \mathbf{e}^+ \mathbf{e}^- (\gamma) \tag{5}$$

Composite ADM leads to monochromatic anti-neutrino signal

- Neutrino detectors sensitive to O(100) MeV -O(10) GeV Super-Kamiokande
- e^+/e^- in the Galaxy can be constrained by AMS-O2 data
- e^+e^- leads to inverse-Compton and synchrotron emission Fermi-LAT γ -ray flux

Decay spectra (Two-body decay case)

Figure: The spectrum of γ , e^+/e^- when two-body decay of dark pion is kinematically allowed, $\epsilon = 2m_A/m_{\pi} = 0.4$.

In progress:

- The original composite ADM model with 3-body decay ($\epsilon = 1.4$)
- Chiral model of composite ADM ($\epsilon = 0.4, 1.4$)

Galactic and extragalactic contribution

• DM density distribution profile given by a generalized NFW profile,

$$\rho_{\rm DM}(R) = \rho_{\odot} \left(\frac{R}{R_{\odot}}\right)^{-\gamma} \left(\frac{1+R/R_c}{1+R_{\odot}/R_c}\right)^{-(3-\gamma)},\tag{6}$$

where γ = 1.2, R_{\odot} = 8.5 kpc, R_c = 20 kpc, $\rho_{\odot}c^2$ = 0.43 GeV/cm³

• The Galactic line of sight component of the flux of S coming from the direction θ is given as

$$\Phi_{G}(E,\theta) = \frac{1}{4\pi m_{\rm DM} \tau_{\rm DM}} \frac{dN_s}{dE} \int_0^{s_{\rm max}(\theta)} \rho_{\rm DM}(R(s)) ds$$

• The contribution from extragalactic DM is important for neutrinos

$$\Phi_{\rm EG}(E) = \frac{\Omega_{\rm DM}\rho_c}{4\pi m_{\rm DM}} \int dz \left| \frac{dt}{dz} \right| F(z) \frac{dN_s}{dE} (z_s = z)$$
(7)

Electrons and positrons

Figure: Electron and positron spectrum after propagation in the Galaxy (calculated using GALPROP) for $m_{\rm DM} = 10$ GeV and $2m_A/m_{\pi} = 0.4$

- We use GALPROP to calculate the e^+/e^- spectra for the diffusion model that fits the cosmic ray electron spectrum
- Main energy loss processes of electrons are inverse-Compton and synchrotron emission

γ rays and neutrinos

Figure: γ rays and ν -s for $2m_A/m_{\pi} = 0.4$ and $m_{N'} = 10$ GeV for the two-body decay model

- Extragalactic γ-rays are absorbed in the optical/UV/IR background and are not included
- The extragalactic contribution smoothens the monochromatic neutrino spectrum
- We use the effective areas for fully contained events at the Super-K detector to put constraints on the decay rate for 3-yr of observation of all-flavor neutrino flux

Summary

Figure: Constraints on ADM decay rate through various channels

Results

- Positrons provide the most stringent constraints on the dark nucleon decay
- However, using Hyper-K detector (8.3x volume), constraints can be more significant depending on the atmospheric background.
- For 3-body decay case ($\epsilon = 1.4$), positron flux may be reduced, leading to weaker constraints