FY2023 "What is dark matter?

- Comprehensive study of the huge discovery space in dark matter"

Primordial black holes and stochastic GW background

Sachiko Kuroyanagi

(Group A3 "macroscopic dark matter")

IFT UAM-CSIC / Nagoya University

Primordial Black Holes (PBHs)

= Black holes generated in the early universe

could originate from

Inflation

- Reheating
- Phase transitions
- Collapse of cosmic strings
- Scalar field instabilities etc.

Origin of the observed BBHs could be primordial.

Bird et al., PRL 116, 201301 (2016) Clesse & Garcia-Bellido, PDU 10, 002 (2016) Sasaki et al., PRL 117, 061101 (2016)

GW background as a probe of PBHs

large primordial curvature perturbations at small scale can be produced by changing the dynamics of the inflaton

GW associated with PBH formation

GW background from PBH mergers

S. Clesse & J. García-Bellido, PDU (2017) 105-114

GW observatories cover a wide range of scales!

1 LIGO-Virgo-KAGRA (LVK) O3 run

Most recent public data: O3 (April 2019 - March 2020)

• 90 BBH events

• Upper bound on a stochastic GW background $\Omega_{GW} < 5.8 \times 10^{-9}$ for a flat spectrum (95%CL)

1) LVK O3 constraint on 2nd order GWs

R. Inui, S. Jaraba, SK, S. Yokoyama, arXiv: 2311.05423

Non-Gaussianity appears in many inflationary models predicting large curvature perturbations

- ultra slow roll inflation
- multi field inflation
- couplings leading to particle production, etc.

 \rightarrow constraining M_{BH} = 10⁻¹⁰~10⁻¹⁴M_{sun}

How do we obtain constraints?

Likelihood analysis

IJ: detector combinations k: frequencies

More details will be in...

Springer textbook on PBH

Editorial board: Chris Byrnes, Gabriele Franciolini, Tomohiro Harada, Paolo Pani, Misao Sasaki

LVK constraints on PBHs from stochastic gravitational wave background searches

Alba Romero-Rodríguez and Sachiko Kuroyanagi

Abstract Primordial black holes (PBHs) may have left an imprint in the form of a stochastic gravitational wave background (SGWB) throughout their evolution in the history of the Universe. This chapter highlights two types of SGWB: those generated by scalar curvature perturbations associated with PBH formation in the early Universe and those composed of ensembles of GWs emitted during PBH mergers. After describing detection methods and a brief introduction on Bayesian inference, we discuss current constraints imposed by LIGO-Virgo-KAGRA (LVK) observations through the non-detection of the SGWBs and discuss their physical implications.

2 Astrometry upper bound

S. Jaraba et al. (+SK) MNRAS 524, 3609-3622 (2023)

GWs induce fluctuations in location and proper motion of stars

Gaia satellite (2013-) provides precise measurements of star motions

Upper bound obtained by fitting l=2 multipole mode $\Omega_{\text{GW}} = \frac{6}{5} \frac{1}{4\pi} \frac{P_2}{H_0^2} = 0.000438 \frac{P_2}{(1 \ \mu \text{as/yr})^2} h_{70}^{-2}$				e Valid frequ 4.2×10^{-18}	Valid frequency range $4.2 \times 10^{-18} \text{ Hz} \leq f \leq 1.1 \times 10^{-8} \text{ Hz}$	
Data set	$\sqrt{P_2}$ (µas/yr)	Z_2	$\ln \mathcal{B}_1^{12}$	$h_{70}^2 \Omega_{\rm GW}$	$h_{70}^2 \Omega_{\rm GW}^{\rm up}$ (95 percent)	
Masked	12.51(1.81)	4.19	-17.2	0.069(0.021)	0.114	
Pure	23.15(2.01)	10.21	34.4	0.235(0.040)	0.295	
Astrometric	10.13(1.73)	3.10	-23.2	0.045(0.017)	0.089 Obs. time	
Intersection	9.53(1.73)	2.68	-23.5	0.040(0.017)	<u>0.087</u> 2 84vr	
VLBA	2.73(1.23)	-1.93	-42.3	0.0033(0.0056)	0.024 22 2 vr	
VLBA+Gaia DR1	5.30(1.36)	0.57	-14.7	0.0123(0.0077)	0.034	
SDSS+Gaia EDR3	52.48(10.88)	4.70	69.6	1.21(0.54)	2.43	

③ Pulsar timing

"Evidence" of GWs at nano-Hz frequencies

GW spectrum from PBH mergers

M. Braglia, J. Garcia-Bellido, SK, JCAP12, 012 (2021)

 $\tau_{\rm ind} = \sigma v_{\rm PBH} n(m)$

all the individual events in GWTC-2 (38 /Gpc³/yr)

Prediction for pulsar timing?

M. Braglia, J. Garcia-Bellido, SK, JCAP12, 012 (2021)

GW spectrum

Suppression of the merger rate of large mass BHs (more difficult to form binaries)

 \rightarrow introduced by introducing a cutoff in mass function $1/[1+(M_{tot}/M_*)]^{\alpha_c}$

Better way to provide prediction for pulsar timing?

Summary

Stochastic GW background is a useful tool to probe signature of PBHs.

Possible PBH signals and its peak frequency

2nd order GW
$$f \sim 5.6 \times 10^{-9} \left(\frac{M_{\rm PBH}}{M_{\odot}}\right)^{-1/2} {\rm Hz}$$

PBH mergers $f \sim 8.3 \times 10^3 \left(\frac{M_{\odot}}{M_{\rm PBH}}\right)^{-1} {\rm Hz}$

Multi-frequency GW observations (Astrometry, Pulsar timing, Space-borne/Ground-based interferometers) help to explore a wide range of PBH mass scales!