A03 group updates Investigation of Primordial Black **Holes and Macroscopic Dark Matter** (原始ブラックホール・ 巨視的ダークマターの探求)

Chulmoon YooNagoya U.Tomohiro HaradaRikkyo U.Sachiko Kuroyanagi Nagoya U. / IFT MadridAlexander KusenkoKIPMU / UCLAMisao SasakiKIPMU

Yasutaka Koga Albert Escriva Nagoya U. Nagoya U.

Primordial Black Hole

Remnants of primordial non-linear inhomogeneityBHs not produced by late time stellar collapse

OReliable formation scenario:

collapse of rarely dense regions generated by quantum fluctuation during inflation It's rare, but has a finite probability!!

◎ If you accept inflation, you should be able to accept the **PBH formation**

OPBH is a plausible and appealing **DM** candidate

- BHs "exist" in our universe
- BHs behave as DM in a cosmological scale
- Reliable scenario of PBH formation

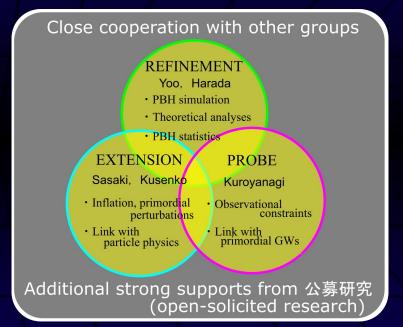
How many **PBHs** in our universe?

©They could provide a substantial part of **DM**

◎How large fraction of DM PBHs can account for?

To answer this, we need

- > precise theoretical estimation of abundance
- realistic and attractive models
- tests through observational constraints


OWhat are distinct characters of **PBH DM**?

For the prediction, we need

- deeper understanding of formation process
- finding model dependent features
- proposal of specific observables to probe it

OPossible other macroscopic DM?

Exotic stars (gravastar, soliton star, Q-balls...)

Activities of A03 in the fiscal year 2023

- Regular meetings (https://sites.google.com/view/pbhmacrodm/)
 5th meeting 2022/06/09 online
 10 mins short talks by Sasaki-san, Kusenko-san, Koga-san
 6th meeting 2022/08/09 in-person
 7th meeting 2022/11/21 in-person
 Brainstorming, with C01, about 20 participants
- > Workshop: Dynamics of primordial black hole formation (3/9,10)
- 2302.14080 Primordial-tensor-induced stochastic gravitational waves Mohammad Ali Gorji, Misao Sasaki
- 2303.05178 New shape of parity-violating graviton non-Gaussianity Jinn-Ouk Gong, Maria Mylova, Misao Sasaki
- 2303.07661 Gravitational wave hints black hole remnants as dark matte Guillem Domènech, Misao Sasaki
- 2304.13053 Halo Formation from Yukawa Forces in the Very Early Universe Guillem Domènech, Derek Inman, Alexander Kusenko, Misao Sasaki
- 2304.02267 Hairy black holes in AdS with Robin boundary conditions
 Tomohiro Harada, Takaaki Ishii, Takuya Katagiri, Norihiro Tanahashi
- 2304.06350 Stochastic gravitational wave background constraints from Gaia DR3 astrometry Santiago Jaraba, Juan García-Bellido, Sachiko Kuroyanagi, Sarah Ferraiuolo, Matteo Braglia
- 2304.13284 Revisiting compaction functions for primordial black hole formatio Tomohiro Harada, Chul-Moon Yoo, Yasutaka Koga
- 2305.12812 Non-Linearity-Free prediction of the growth-rate \$f\sigma_8\$ using Convolutional Neural Networks Koya Murakami, Indira Ocampo, Savvas Nesseris, Atsushi J. Nishizawa, Sachiko Kuroyanagi

Activities of A03 in the fiscal year 2023

- 2305.13429 *Constraints on late-forming exploding black holes* \succ Zachary S.C. Picker, Alexander Kusenko
- 2305.13434 Explaining the GeV excess with exploding black holes Zachary S.C. Picker, Alexander Kusenko
- 2305.13830 Spins of primordial black holes formed with a soft equation of state \checkmark Daiki Saito, Tomohiro Harada, Yasutaka Koga, Chul-Moon Yoo
- λ 2305.18140 Highly asymmetric probability distribution from a finite-width upward step during inflation Ryodai Kawaguchi, Tomohiro Fujita, Misao Sasaki
- λ 2306.04056 Defrosting and Blast Freezing Dark Matter Marcos M. Flores, Chris Kouvaris, Alexander Kusenko
- λ 2307.00915 The effects of orbital precession on hyperbolic encounters Marienza Caldarola, Sachiko Kuroyanagi, Savvas Nesseris, Juan Garcia-Bellido
- 2307.13109 Extra-tensor-induced origin for the PTA signal: No primordial black hole production A Mohammad Ali Gorji, Misao Sasaki, Teruaki Suyama
- 2308.05904 Log-periodic gravitational-wave background beyond Einstein gravity Gianluca Calcagni, Sachiko Kuroyanagi
- 2308.08623 G objects and primordial black holes $\boldsymbol{\lambda}$
 - Marcos M. Flores, Alexander Kusenko, Andrea M. Ghez, Smadar Naoz
- 2308.09094 Structure formation after reheating: Supermassive primordial black holes and Fermi ball dark matter \succ Marcos M. Flores, Yifan Lu, Alexander Kusenko
- 2309.14193 Universal gravitational waves from interacting and clustered solitons $\mathbf{\Sigma}$ Kaloian D. Lozanov, Misao Sasaki, Volodymyr Takhistov
- 2309.15510 Gravitational Waves in the Circular Restricted Three Body Problem $\mathbf{\lambda}$ Mikel Martin, Sachiko Kuroyanagi, Savvas Nesseris "What is dark matter?" Symposium 2023 fiscal year

Activities of A03 in the fiscal year 2023

- 2310.07439 Next-to-leading order corrections to gravitational wave emission from close hyperbolic encounters Alex Roskill, Marienza Caldarola, Sachiko Kuroyanagi, Savvas Nesseris
- 2310.16482 Primordial Black Hole formation from overlapping cosmological fluctuations Albert Escrivà, Chul-Moon Yoo
- 2310.19317 Turbulence on open string worldsheets under non-integrable boundary conditions Takaaki Ishii, Ryo Kitaku, Keiju Murata, Chul-Moon Yoo
- 2310.19857 Primordial black holes and their gravitational-wave signatures LISA Cosmology Working Group • Eleni Bagui et al. (Sachiko Kuroyanagi)
- 2311.05423 Constraints on Non-Gaussian primordial curvature perturbation from the LIGO-Virgo-KAGRA third observing run Ryoto Inui, Santiago Jaraba, Sachiko Kuroyanagi, Shuichiro Yokoyama
- 2311.17760 Primordial Black Holes and induced gravitational waves from a smooth crossover beyond Standard Mode Albert Escrivà, Yuichiro Tada, Chul-Moon Yoo
- 2312.07058 Axion Cloud Decay due to the Axion-photon Conversion with Multi-pole Background Magnetic Fields Yusuke Sakurai, Chul-Moon Yoo, Atsushi Naruko, Daisuke Yamauchi
- 2312.15062 Feeding plankton to whales: high-redshift supermassive black holes from tiny black hole explosions Yifan Lu, Zachary S.C. Picker, Alexander Kusenko
- > 2401.02314 Applying the Viterbi Algorithm to Planetary-Mass Black Hole Searches
 - George Alestas, Gonzalo Morras, Takahiro S. Yamamoto, Juan Garcia-Bellido, Sachiko Kuroyanagi et al.
- > 2401.06329 Numerical simulation of type II primordial black hole formation
 - Koichiro Uehara, Albert Escrivà, Tomohiro Harada, Daiki Saito, Chul-Moon Yoo
- 2402.13341 Revisiting formation of primordial black holes in a supercooled first-order phase transition Marcos M. Flores, Alexander Kusenko, Misao Sasaki

A03 talks in this symposium

7th Mar. 16:45 - 17:10 Sachiko Kuroyanagi

Primordial Black Hole and stochastic gravitational wave background

8th Mar. 09:10 - 09:25 Koichiro Uehara

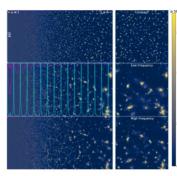
2401.06329 *Numerical simulation of type II primordial black hole formation* **Koichiro Uehara**, Albert Escrivà, **Tomohiro Harada**, Daiki Saito, **Chul-Moon Yoo**

8th Mar. 09:25 - 09:40 Yasutaka Koga

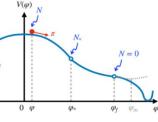
2305.13830 *Spins of primordial black holes formed with a soft equation of state* Daiki Saito, Tomohiro Harada, Yasutaka Koga, Chul-Moon Yoo

8th Mar. 09:40 - 09:55 Albert Escrivà

2311.17760 *Primordial Black Holes and induced gravitational waves from a smooth crossover beyond Standard Model* Albert Escrivà, Yuichiro Tada, Chul-Moon Yoo


Activity in Kavli IPMU

Logarithmic Duality of the Curvature Perturbation *S. Pi and M. Sasaki,* PRL 131 (2023), 011002


General expressions for the curvature perturbation R for models with potential approximated by a piecewise quadratic potential V(ϕ) are derived. We find a general formula for R($\delta \phi, \delta \pi$), consisting of a sum of logarithmic functions of the field perturbation $\delta \phi$ and the velocity perturbation $\delta \pi$. Each logarithmic expression has an equivalent dual expression.

$\mathcal{R} = \frac{1}{\lambda_{\pm}} \ln \left[1 + \frac{\lambda_{\mp} \delta \varphi}{\pi + \lambda_{\mp} \varphi} \right] - \frac{1}{\lambda_{\pm}} \ln \left[1 + \frac{\delta \pi_{*}}{\pi_{*} + \lambda_{\mp} \varphi_{*}} \right] + \frac{1}{\tilde{\lambda}_{\pm}} \ln \left[1 + \frac{\delta \pi_{*}}{\pi_{*} + \lambda_{\mp} \varphi_{*}} \right]$

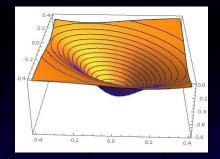
Halo formation from Yukawa forces in the very early Universe *G. Domènech, D. Inman, A. Kusenko, and M. Sasaki* Phys. Rev. D 108 (2023), 103543

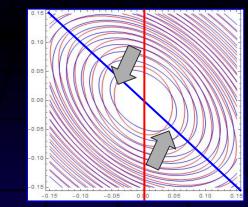
If long-range attractive forces exist, cosmic halo formation can begin in the radiation-dominated era. We study a simple realization of this effect in a system where dark matter fermions have Yukawa interactions mediated by scalar particles. We develop a precise modeling of the fermion density fluctuations, and perform N-body simulations. We find that halo formation occurs exponentially fast and on scales substantially larger than simple estimates predict.

The 20th Sakata-Hayakawa Memorial Lectureship Feb 3, 2014

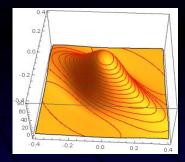
PBH formation from a nonspherical density profile with a misaligned deformation tensor

CY in prep.


Conclusion: The dimensionless PBH spin s is typically so small that $s \ll 0.1$ for w=p/p $\gtrsim 1/5$

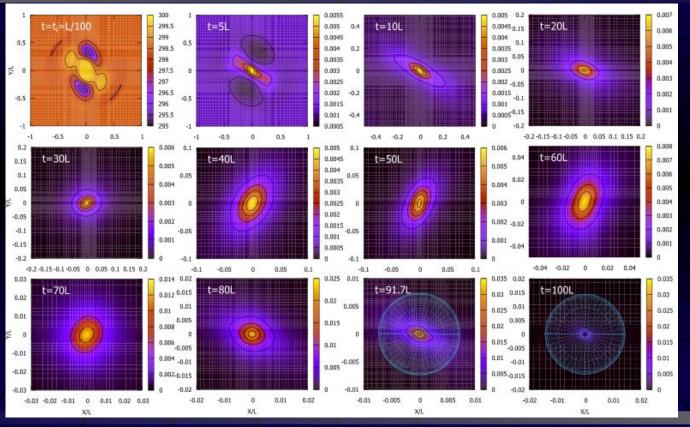

3+1 dimensional simulation of PBH formation

Olnitial curvature perturbation


$$ds^2 \simeq -dt^2 + a(t)^2 e^{-2\zeta(x)} dec x \cdot dec x \ rac{\zeta}{\mu} \simeq -1 + rac{1}{2} (k_1^2 (x+y)^2/2 + k_2^2 (x-y)^2/2 + k_3^2 z^2) + \mathcal{O}(r^4) \ rac{ riangle \zeta}{\mu k^2} \simeq 1 - rac{1}{2} (\kappa_1^2 x^2 + \kappa_2^2 y^2 + \kappa_3^2 z^2) + \mathcal{O}(r^4)$$

 ζ ~gravitational potential on (x,y) plane

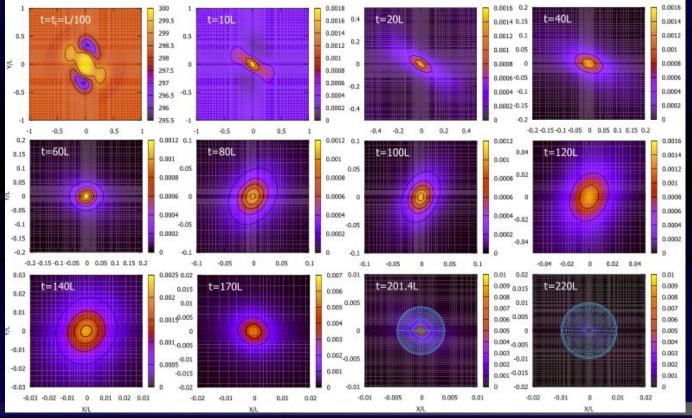
$\Delta \zeta \sim$ energy density on (x,y) plane



tidal torque \Rightarrow angular momentum transfer \Rightarrow spinning PBH \odot 3+1 dimensional full GR numerical simulation with BSSN formalism

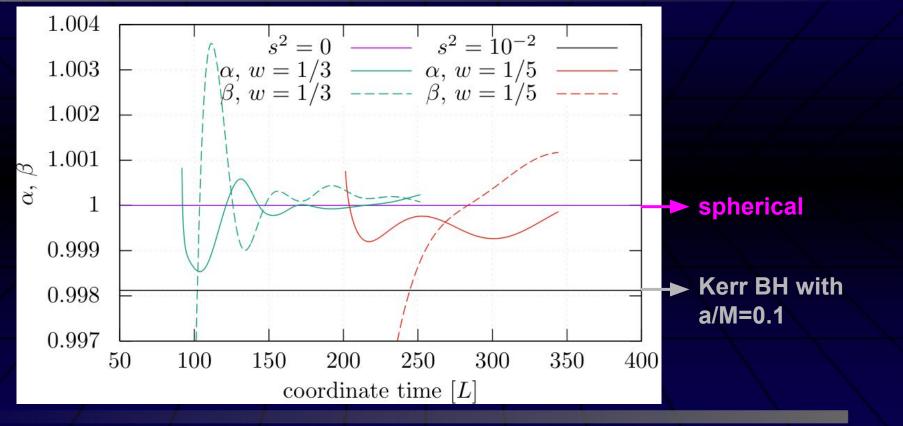
"What is dark matter?" Symposium 2023 fiscal year

A03 PBH/macroscopic DM


Snapshots for w=p/p=1/3

"What is dark matter?" Symposium 2023 fiscal year

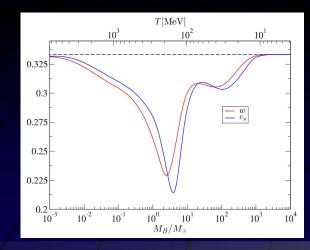
A03 PBH/macroscopic DM


Snapshots for w=p/p=1/5

"What is dark matter?" Symposium 2023 fiscal year

A03 PBH/macroscopic DM

Shape of the horizon



"What is dark matter?" Symposium 2023 fiscal year

A03 PBH/macroscopic DM

PBH formation from a nonspherical density profile with a misaligned deformation tensor

CY in prep.

Conclusion: The dimensionless PBH spin s is typically so small that s≪0.1 for w=p/p≳1/5 ⇒no significant spin-up from **QCD** cross-over

3 talks

8th Mar. 09:10 - 09:25 Koichiro Uehara

2401.06329 *Numerical simulation of type II primordial black hole formation* **Koichiro Uehara**, Albert Escrivà, **Tomohiro Harada**, Daiki Saito, **Chul-Moon Yoo**

8th Mar. 09:25 - 09:40 Yasutaka Koga

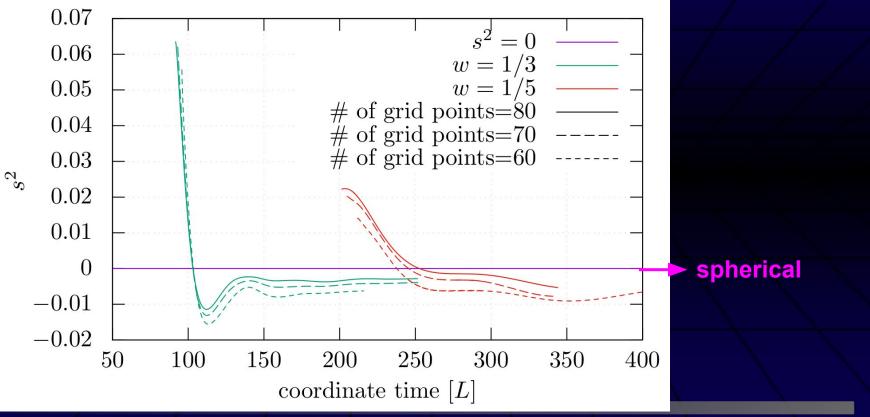
2305.13830 *Spins of primordial black holes formed with a soft equation of state* Daiki Saito, Tomohiro Harada, Yasutaka Koga, Chul-Moon Yoo

8th Mar. 09:40 - 09:55 Albert Escrivà

2311.17760 *Primordial Black Holes and induced gravitational waves from a smooth crossover beyond Standard Model* Albert Escrivà, Yuichiro Tada, Chul-Moon Yoo

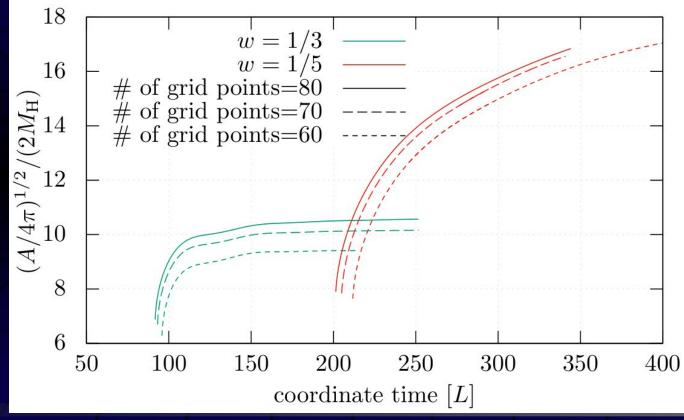
It's time to study **Primordial Black Hole!**

©We aim to develop the **PBH** study further and clarify the possibility of **PBH DM**


©The field is broad and still many possibilities to extend and think of

OAnybody is welcome to join us. Please contact me if you are interested in our activity.

Let's enjoy PBH research with us! Thank you for your attention.


Effective spin of the horizon

"What is dark matter?" Symposium 2023 fiscal year

A03 PBH/macroscopic DM

Time evolution of the area of the horizon

