Dark Matter Searches in the Galactic dwarf spheroidals in the Subaru-PFS era

Mar. 8, 2024

Kohei Hayashi (NIT, Sendai College)

FY2023 "What is dark matter?"@YITP

Dwarf spheroidal galaxy (dSph): the promising targets for studying DM

Proximity (20-100 kpc) Clean targets for indirect DM searches Dark-matter rich system

ESA/Gaia/DPAC

Dwarf spheroidal galaxy (dSph):

Proximity (30-100 kpc) **Clean targets for indirect DM searches** Dark-matter rich system

Indirect detection of eV DM with Subaru-IRCS Yin and KH (2024)

Subaru-IRCS observation can place more stringent constraints on $g_{\phi\gamma\gamma}$ of eV DM than the GC cooling.

Dwarf spheroidal galaxy (dSph): the promising targets for studying DM

on their dark matter density profiles. Dark-matter rich system

To gain insight into the properties of dark matter from the Galactic dwarf spheroidals

 $m_{\phi}[eV]$ Yin & KH²(2024)

it is necessary to place tighter constraints

Diversity of the DM distributions?

KH, Chiba & Ishiyama (2020) KH, Hirai, Chiba & Ishiyama (2023)

Diversity of the DM distributions?

KH, Chiba & Ishiyama (2020) KH, Hirai, Chiba & Ishiyama (2023)

 $\frac{\partial [\nu(r)\sigma_r^2(r)]}{\partial r} + \frac{2\nu(r)\beta_{\mathrm{ani}}(r)\sigma_r^2(r)}{r} = -\nu(r)\frac{GM_{\mathrm{DM}}(r)}{r^2}$

$\rho_{\rm DM} - \beta_{\rm ani}$ degeneracy

$$M_{\rm DM}(r) = \int_0^r 4\pi s^2 \rho_{\rm DM}(s)$$
$$\beta_{\rm ani}(r) = 1 - \frac{\sigma_t^2(r)}{2\sigma_r^2(r)}$$

Degeneracy occurs between velocity anisotropy parameter and density distribution.

$\rho_{\rm DM} - \beta_{\rm ani}$ degeneracy

$$M_{\rm DM}(r) = \int_0^r 4\pi s^2 \rho_{\rm DM}(s)$$
$$\beta_{\rm ani}(r) = 1 - \frac{\sigma_t^2(r)}{2\sigma_r^2(r)}$$

Degeneracy occurs between velocity anisotropy parameter and density distribution.

How to break the degeneracy?

$\rho_{\rm DM} - \beta_{\rm ani}$ degeneracy

$$M_{\rm DM}(r) = \int_0^r 4\pi s^2 \rho_{\rm DM}(s)$$
$$\beta_{\rm ani}(r) = 1 - \frac{\sigma_t^2(r)}{2\sigma_r^2(r)}$$

Degeneracy occurs between velocity anisotropy parameter and density distribution.

How to break the degeneracy?

•••

- Higher-order velocity moments

$\rho_{\rm DM} - \beta_{\rm ani}$ degeneracy

$$M_{\rm DM}(r) = \int_0^r 4\pi s^2 \rho_{\rm DM}(s)$$
$$\beta_{\rm ani}(r) = 1 - \frac{\sigma_t^2(r)}{2\sigma_r^2(r)}$$

New observational data such as proper motions of each member star

Degeneracy occurs between velocity anisotropy parameter and density distribution.

How to break the degeneracy?

•••

- Higher-order velocity moments

$\rho_{\rm DM} - \beta_{\rm ani}$ degeneracy

$$M_{\rm DM}(r) = \int_0^r 4\pi s^2 \rho_{\rm DM}(s)$$
$$\beta_{\rm ani}(r) = 1 - \frac{\sigma_t^2(r)}{2\sigma_r^2(r)}$$

New observational data such as proper motions of each member star

Fourth order velocity moments and kurtosis Wardana, Chiba, KH (2024, in prep.)

The shape of velocity distribution should be sensitive to velocity anisotropy.

The 4th order velocity moments (spherically symmetry):

$$\overline{v_{\rm los}^4}(R) = \frac{2}{I(R)} \int_R^\infty dr \left[1 - 2\beta \frac{R^2}{r^2} + \frac{1}{2}\beta(1+\beta)\frac{R^4}{r^4} \right]$$

Kurtosis:

$$\kappa = \frac{\overline{v_{\rm los}^4}}{(\sigma_{\rm los}^2)^2}$$

e.g., Lokas (2002), Richardson & Fairbairn (2012)

Velocity Distribution

Application to mock data sets Wardana, Chiba, KH (2024, in prep.) Two sets of new mock data: cuspy (green) and core (orange) (isotropic: $\beta = 0$.)

orep.)

Wardana, Chiba, **Result: The power of 4th-order moments** KH (2024, in prep.)

 $N_{star} = 500$ stars, $v_{err} = 2$ km/s (Similar to the typically available data for MW's dSphs)

Result: Dependance of N_{star} Wardana, Chiba, KH (2024, in prep.) 2nd & 4th-order moments analysis, $v_{err} = 2 \text{ km/s}$ is fixed.

Result: Dependance of N_{star} Wardana, Chiba, KH (2024, in prep.)

2nd & 4th-order moments analysis, $v_{err} = 2 \text{ km/s}$ is fixed.

$$-\log(1-\beta) = 0.00^{+0.04}_{-0.04}$$

Result: Dependance of Verr Wardana, Chiba, KH (2024, in prep.) 2nd & 4th-order moments analysis, $N_{star} = 5000$.

Fourth order velocity moments and kurtosis Wardana, Chiba, KH (2024, in prep.)

To place further constraints on DM profiles in the dSphs via 4th order analysis,

- Large number of kinematic data
- Precise velocity measurements

Subaru-HSC

Subaru-PFS

Non-trivial effects on dynamical analysis should be considered

- Contamination stars (MW think disk, thin disk, and halo stars)
- Binary stars (Binary system can inflate l.o.s velocity dispersions)
- Tidal forces (Deviation from dynamical equilibrium)

PFS-GA science team

Binary stars

Contamination stars

L. Dobos (JHU)

C. Filion (JHU)

DM density profile estimation through normalizing flows Lim, KH, Nojiri et al. (2024, in prep.)

Observable informations are limited to: - Celestial coordinate Line-of-sight velocity

$$(x, y, z, v_x, v_y, v_z) \longrightarrow$$

Conventional methods introduce in order to simplify the problem and make it solvable only with limited information:

- Symmetry assumptions (e.g., spherical, axisymmetric)
- Parameterized stellar and DM density profiles
- Velocity anisotropy profile
- etc...

$$(x, y, v_z)$$

 $(x, y, z, v_x, v_y, v_z) \longrightarrow (-, y, v_z)$

Conventional methods introduce in order *simplify the problem and* make it solvable only with limited information: – Symmetry assumptions Normalizing flows

- Parameterized stellar and DM density profiles Velocity anisotropy profile $\,
 u(r), \, \sigma_r^2(r)$
- etc...

DM density profile estimation through normalizing flows Lim, KH, Nojiri et al. (2024, in prep.)

oWe-introduce-model-independent, unbinned Jeans analysis using neural density estimator.

Normalizing flows: Neural Density Estimator Lim, KH, Nojiri et al. (2024, in prep.)

Normalizing Flows (NFs) is an artificial neural network that learns a transformation of random variables.

Normalizing flows: Neural Density Estimator

Normalizing Flows (NFs) is an artificial neural network that ables. We train hormalizing flows to learn the phase-space density of stars in dSph.

x

Results: Stellar number density Lim, KH, Nojiri et al. (2024, in prep.) Inferred stellar number density trained on 2D position (x,y). Mock 1000 stars are taken from GaiaChallenge with cusp DM, isotropic: $\beta = 0$.

Results: Dark matter density

Inferred mass density calculated from stellar density and velocity dispersion trained on 3D infomation (x,y, vz).

Enclosed mass M(r)stimate +- 1 sig stat. on $\nu(r)$, $\sigma_r(r)$ $M(< r) = -\frac{r\sigma_r^2}{G} \left(\frac{d\log\nu}{d\log r} + \frac{d\log\sigma_r^2}{d\log r} + 2\beta\right)$ 10^{8} $M(\vec{r})$ 10^{6} 10^{4} 1.0 $\frac{M(\vec{r}) - M_{\rm true}(r)}{M_{\rm true}(r)}$ 0.5-0.5-1.0 10^{-2} 10^{-1} 10^{0} $r \; [\mathrm{kpc}]$

Lim, KH, Nojiri et al. (2024, in prep.)

Results: Dark matter density

trained on 3D infomation (x,y, vz).

Enclosed mass M(r)

Lim, KH, Nojiri et al. (2024, in prep.)

Take Home Message

- properties of dark matter.
- The current constraints on their DM density profiles still have large uncertainties, even though several dSphs favor cusped DM halo.
- Our teams are now developing new dynamical analysis to place further constraints on dSph's DM density profile.
- profiles.

The Galactic dwarf spheroidal galaxies are ideal target for studying the basic

 Subaru HSC/PFS enable us to hunt a huge number of dSph's stars out to their outskirts, and thereby placing tighter constraints on their DM density