FY2023

"What is dark matter? - Comprehensive study of the huge discovery space in dark matter" 2024. 3. 8

Semi-analytic description of halo structures and its application

Nagisa Hiroshima (U. of Toyama \rightarrow YNU)

Structure of the Universe

Hint for DM from halos

- How the density profile looks like?
- How many subhalos does the Milky Way have?
- How massive the minimum halo is?
- How about the connection to the cosmological model?
- How dense subhalos can be at z = 0?
 And can we expect sufficient flux from DM annihilations (or decays)?
- What about the structure around the solar system?

from $m \sim \mathcal{O}(10^{-6}? - 10^{16})M_{\odot}, z \sim (z_{eq}, 0)$

Semi-analytic

modeling

Merit

- cost-effective
- multi-scale coverage ($m \sim \mathcal{O}(10^{-6}? 10^{16})M_{\odot}$)
- . multi-redshift coverage ($z = 0 \sim z_{eq}$)

Applicability

- prediction of subhalo number count
- · quantification of the source of the scatter
- · equipping halo probes for cosmological studies
- reduction of J-factor uncertainty

Extended Press-Schechter

overdensity collapse to form halo

two parameters:

collapse redshift ($\delta(z)$) & mass scale ($\sigma(M)$)

distribution function

$$f(\sigma^{2}(m), \delta(z + \Delta z) \mid \sigma^{2}(M), \delta(z)) = \frac{1}{\sqrt{2\pi}} \frac{\delta(z + \Delta z) - \delta(z)}{[\sigma^{2}(m) - \sigma^{2}(M)]^{3/2}} \exp\left[-\frac{(\delta(z + \Delta z) - \delta(z))^{2}}{2(\sigma^{2}(m) - \sigma^{2}(M))}\right]$$

fraction of halo of which mass was m at $z + \Delta z$ in M at z

evolution history of M(z)

- distribution function

$$f(\sigma^{2}(m), \delta(z + \Delta z) \mid \sigma^{2}(M), \delta(z)) = \frac{1}{\sqrt{2\pi}} \frac{\delta(z + \Delta z) - \delta(z)}{[\sigma^{2}(m) - \sigma^{2}(M)]^{3/2}} \exp\left[-\frac{(\delta(z + \Delta z) - \delta(z))^{2}}{2(\sigma^{2}(m) - \sigma^{2}(M))}\right]$$

8

unevolved mass function

unevolved mass function

evolved mass function

- # distribution at accretion: given (unevolved mass function)
- tidal effect:

determined by the host mass & redshift

$$\dot{m}(z) = -A(M, z) \frac{m}{\tau_{\rm dyn}} \left(\frac{m}{M}\right)^{\zeta(M, z)}$$

different host evolution \leftrightarrow different tidal evolution

evolved mass function

intrinsic scatter only

12

evolved mass function

Poisson effect included

Examples of

applications

Assumptions & Approximations

- NFW profile for both the host and subhalos

$$\rho(r) = \rho_s \left(r/r_s \right)^{-1} \left(1 + r/r_s \right)^{-2}$$

$$(\rho_s, r_s) \leftrightarrow (V_{\text{max}}, r_{\text{max}})$$

- tidal mass-loss at the pericenter dominates
- concentration-mass relation
- scaling of the profile parameter (V_{max} , r_{max}) to the
 - mass ratio before and after the tidal evolution
- galaxy formation condition determined by $V_{\rm max}$

Ando, NH, Ishiwata, 2022

1. Test for cosmology

curvature perturbation $\mathcal{P}_{R}(k) = \mathcal{P}_{R}^{(0)} + \mathcal{P}_{R}^{\text{bump}}$

Process input: $\delta(z) \& \sigma(M)$ (or $\mathcal{P}(k)$)

- 1. host halo evolution: using EPS formula
 - $\exists m(z + \Delta z) > M(z)/2 \Rightarrow$ unique progenitor
- 2. subhalo mass function at accretion:
 - normalization at each redshift \rightarrow integration to z = 0
- 3. tidal evolution of subhalos:

$$\dot{m}(z) = -g \frac{m}{\tau_{\rm dyn}} \left(\frac{m}{M(z)}\right)^{\zeta}$$

4. subhalo-satellite galaxy connection

input: $\delta(z) \& \sigma^2(M) = \int d \ln k \frac{k^3}{2\pi^2} P(k) W^2(kR)$

Ando, Hiroshima, Ishiwata, 2022 Exclusion of Bump $\begin{cases} (A - \mathcal{P}_R^{(0)}(k_b)) \left(\frac{k}{k_b}\right)^{n_b} & (k \le k_b) \\ 0 & (k > k_b) \end{cases}$ $\mathcal{P}_{R}(k) = \mathcal{P}_{R}^{(0)} + \mathcal{P}_{R}^{\text{bump}}, \quad \mathcal{P}_{R}^{\text{bump}} = \langle \mathcal{P}_{R}^{(0)} \rangle$ Limit on \mathcal{P}_R , model:(a) 10^{-2} $(n_{b} = 4)$ 10-3 condition from subhalo number 10^{-4} Amplitude 10-2 counts: $N(V_{\text{max}} > 4 \text{km/s}) > 94$ 10^{-6} requirement to satisfy GD-1 10^{-7}

u-distortion

10³

 $k [Mpc^{-1}h]$

10²

10¹

 10^{-8}

This work: Satellite counts ($V_{max} > 4$ km/s)

104

10⁵

 10^{6}

This work: Stellar stream ($m > 10^5 M_{\odot}$)

stream observation

subhalo profile estimate

Ando, Geringer-Sameth, NH, Hoof, Trotta, Walker, 2020

 red: prediction of satellite counts
 white: "informative" prior distribution
 black: likelihood
 blue: posterior distribution

making use of the evolution history of DM halos to obtain good priors for the Milky Way's satellites

Reduction of uncertainty

Ando, Geringer-Sameth, NH, Hoof, Trotta, Walker, 2020

Summary

- Properties of DM halo provide us with hints about the nature of DM.
- We can study halos and its implications in a scale-free way by adopting semi-analytic scheme.
- · Our scheme enables us to directly connect subhalo
 - evolution to the evolution history of the host.
- Cost-effective calculations of subhalos helps us to investigate issues around, such as cosmology and Jfactor uncertainties.
- Further extensions are now on-going.