B04-report

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber

Yuta Yagi (Ph.D. candidate)

The University of Tokyo², Institute of Space and Astronautical Science / JAXA¹

Collaborators

Tasuku Hayashi^{3,4,7}, Keita Tanaka^{1,2}, Rikuta Miyagawa^{1,2}, Ryo Ota^{1,2}, Noriko Y. Yamasaki^{1,2,3}, Kazuhisa Mitsuda^{1,3,4}, Rumi Sato⁵, Nao Yoshida⁵, Mikiko Saito⁵, Takayuki Homma⁵, Shohei Mori⁶, Yoshiki Nishida⁶, Naoko Iyomoto⁶

- H.R. Quinn 1977)
- One of cold dark-matter candidates in the universe
- Axion-photon conversion is allowed in electric or magnetic fields.
- ♦ Magnetic dipole transition in a nucleus (7Li, 57Fe, 83Kr, 169Tm, etc.) can emit axions

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

A hypothetical elementary particle proposed to solve the strong CP problem (R.D. Peccei and

axion-nucleon coupling

Advantages of solar axion search using 57Fe nuclei4

- Reactions in the stellar core are independent of whether axions constitute the primary component of dark matter.
- Axions, with no theoretical mass limits, require exploration across a wide mass range. However, detection methods based on nuclear interactions allow for focus on the intrinsic energy levels of atomic nuclei, irrespective of axion mass.
- Line spectrum detection offers the advantage of conducting experiments on a relatively smaller scale compared to large-scale experiments requiring massive electromagnet for continuous spectrum detection.
- Abundance of ⁵⁷Fe nuclei in the sun, in contrast to other atoms with magnetic dipole transitions (⁷Li, ⁸³Kr, ¹⁶⁹Tm, etc.), results in a significantly larger flux.
- Iron-57 exhibits axion-nucleon coupling in both solar radiation and terrestrial absorption, eliminating uncertainties associated with axionphoton coupling.

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Previous studies using semiconductor Si detectors 5

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Solar axion mass constraints using axion-nucleon coupling with iron-57

	Mass	Time Constrai		
28 mm	197 mg	13.92 day	<i>m</i> a ≦ 216 eV (95%	
mg/cm2	1.14 g	44.8 day	ma ≦ 145 eV (95%	
32 mm	~ 200–300 mg	-	→ Tsuru-san's talk	

 \bullet Iron-57 branching ratio of 14.4-keV γ -rays — 10.5% That of conversion electrons and lower energy X-rays — 89.5%

Detection efficiency of photodiode for 14.4 keV γ-ray — 14.8% (cf. Derbin+ 2011 Si(Li) detector — 8.91%) (cf. Onuki+ 2023 SOI detector, ISAI — 14.9%)

✦ Total detection efficiency after deexcitation — 1.6% (cf. Derbin+ 2011 Si(Li) detector — 0.94%) (cf. Onuki+ 2023 SOI detector, ISAI — 1.6%)

Detection efficiency is low because only gamma rays can be detected

TES microcalorimeter for X-ray observation 6

Superconducting Transition Edge Sensor (TES) microcalorimeter

Sub-mm size "thermal detector with transition edge"

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

For X-ray observation

Single pixel

Our group (1-pixel), Akamatsu+ 2009 $\Delta E = 2.79 \pm 0.29 \text{ eV} @ 5.9 \text{ keV}$

Our group (1-pixel), Muramatsu+ 2020 $\Delta E = 15.67^{+2.86}_{-2.66} \text{ eV} @ 13.9 \text{ keV}$

Muramatsu+ 2016, J. Low Temp. Phys.

Au absorber Membrane

64-pixel array

5.2 mm

Muramatsu+ 2016, J. Low Temp. Phys. Our group (64-pixel), Muramatsu+ 2016

 $\Delta E = 7.84 \pm 0.57 \text{ eV} @ 5.9 \text{ keV}$

World record (208-pixel), Smith+ 2021

 $\Delta E = 1.97 \pm 0.01 \text{ eV} @ 5.9 \text{ keV}$

 \rightarrow Use ⁵⁷Fe absorber instead of X-ray absorber for solar axion

Yuta Yagi,

Semiconducting Si detector

$\Delta E \sim 500 \text{ eV}$

Total detection efficiency $\sim 1\%$ Detects only gamma rays

Large mass of converted material due to the use of ⁵⁷Fe foil

Just build low background environment that can operate at room temperature

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Superconducting TES microcalorimeter

$\Delta E \sim 2 \text{ eV}$ (theoretically)

Low noise at cryogenic temperature

Total detection efficiency ~ 70%

Capable of self-absorbing gamma rays, conversion electrons, and low-energy X-rays in iron absorbers

1-pixel absorber 100-um square × tens of um = a few ug of 57Fe \rightarrow Arrayed to increase mass

Need anti-coincidence detector that can operate at cryogenic temperature

Observation sensitivity of TES array

3σ upper limit of total detection rate per unit mass of iron-57 in the lab. (events/day/kg) All background limits

$$R = \frac{\sqrt{9b_{\text{pixel}}Nt\eta\Delta E + (9/2)^2 + 9/2}}{tM_{57\text{Fe,pixel}}N\alpha_{\text{TES}}}$$

 b_{pixel} : BDG rate (counts/Spixel/keV) \mathbf{M}_{57} Here the solution (eV) \mathbf{M}_{57} Here the solution (eV) \mathbf{M}_{57} Here the solution of the N: the number of pixels

(i) if $9b_{\text{pixel}}Nt\eta\Delta E \ll (9/2)^2$ (Photon limit)

$$R = \frac{9}{tM_{57}}N\alpha_{\text{TES}}$$

(ii) if $9b_{\text{pixel}}Nt\eta\Delta E \gg (9/2)^2$ (Background limit)

$$R = \frac{\sqrt{9b_{\text{pixel}}\eta\Delta E}}{M_{57\text{Fe,pixel}}\alpha_{\text{TES}}\sqrt{tN}} \propto \frac{1}{\alpha^{1/4}M_{57\text{Fe,pixel}}^{3/4}\alpha_{\text{TES}}}\sqrt{\frac{b_{\text{pixel}}T}{tN}}$$

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Degradation of TES performance due to magnetic field 9

The spectroscopic performance of TES could degrade under a magnetic field made by ferromagnetic iron absorber

When the distance between TES and 5- μ m thick Fe exceeds 30 μ m, the vertical magnetic field is less than 1 μ T.

"Development status of TES micro-calorimeters with 57Fe for solar axion search" Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Structure to reduce the influence of iron magnetism 10

Placing Fe absorber at a distance laterally from TES and thermally linking them with a highly conductive strap

"Development status of TES micro-calorimeters with 57Fe for solar axion search" Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Need to fabricate a test device and confirm the performance

Challenges in fabricating TES for axion

Issues/Challenges

Iron-57 used as absorber is expensive (~ 1M yen/gram), necessitating an efficient deposition method.

Processing pure iron is uncommon, leading to an undeveloped deposition process. The coated area is small (100 µm square) making thickness control challenging.

Due to the increased thermal conduction distance from absorber, it Successfully achieved Fe and Au electroplating with thermal is necessary to deposit films of materials with high thermal conductivities, \geq 1 W/m/K@4 K for Fe conductivity, such as Fe absorber and Au strap. and > 3.5 W/m/K@200 mK for Au

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

Solutions/Improvements

Opting for electroplating, a targeted chemical reaction method, instead of widespread techniques like evaporation or sputtering for cost-effective coating of specific areas.

d	As part of the development, collaboration with Waseda Univ
),	specializing in electroplating, for the deposition of the ir
	absorber.

Yuta Yagi,

Self-fabricated TES Devices

Test device using 56Fe

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

Test device using ⁵⁷Fe

200.0 100.0 s it thickens, the iron film D. Dum surface becomes uneven. 0. 0µm 200.0 100.0

Devices designed with 64 pixels

After Fe deposition process, issues such as peeling and detachment of Fe occur, especially during vacuum cryogenic tests. Currently, less than half of the Fe remains intact.

Use the single-pixel for the first test observation

Yagi+ 2024, *in prep.* Yuta Yagi,

Axion observation setup utilizing dilution refrigerator 13

Dilution refrigerator system

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

TES stage (~ 100 mK)

Yuta Yagi,

Setup of TES stage with Cu collimator 14

L-shaped TES stage

- detector
- To prevent incoming 14.4 keV radiation other than the absorber, a copper collimator was employed.

Underside of stage

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

Conducted tests with single-pixel TES with iron-57 absorber without anti-coincidence

Yuta Yagi,

Schematic diagram

Switching mechanism between calibration and observation 15

► ⁵⁷Co decays to ⁵⁷Fe, emitting 14.4 keV gamma rays, providing an energy calibration source matching axion energy.

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

Measurement log (Jan. to Feb. 2024)

Gate valve OPEN phase (⁵⁷Co energy calibration)

Total ~ 10 days

	Chip ID	Observation start	Observation finish	DC or AC	Causes for stopping measurements	Total observation time	Total observation time (sec)
run114	JAXA115 Ax1 2	5:51:00 PM Jan 16 2024	3:41:37 PM Jan 17 2024	AC	PC auto restart	9h 50m 37s	35,437
run116	JAXA115 Ax1 2	4:13:00 PM Jan 28 2024	1:04:55 AM Jan 29 2024	DC	FLL jumping	8h 51m 55s	31,915
run118	JAXA115 Ax1 2	5:21:00 PM Jan 30 2024	9:24:41 AM Jan 31 2024	AC	Manually stopped	16h 3m 41s	57,821
run120	JAXA115 Ax1 2	5:27:00 PM Jan 31 2024	8:56:56 AM Feb 1 2024	AC	Manually stopped	15h 29m 56s	55,796
run122	JAXA115 Ax1 2	5:39:00 PM Feb 1 2024	8:48:04 AM Feb 2 2024	AC	Manually stopped	15h 9m 4s	54,544
run124	JAXA115 Ax1 2	5:54:00 PM Feb 2 2024	9:00:55 AM Feb 3 2024	AC	Manually stopped	15h 6m 55s	54,415
run126	JAXA115 Ax1 2	5:18:00 PM Feb 3 2024	8:59:17 AM Feb 4 2024	AC	Manually stopped	15h 41m 17s	56,477
run128	JAXA115 Ax1 2	5:17:00 PM Feb 4 2024	8:57:54 AM Feb 5 2024	AC	Manually stopped	15h 40m 54s	56,454
run130	JAXA115 Ax1 2	5:23:00 PM Feb 5 2024	8:36:35 AM Feb 6 2024	AC	Manually stopped	15h 13m 35s	54,815
run133	JAXA115 Ax1 2	5:20:00 PM Feb 7 2024	9:57:15 AM Feb 8 2024	AC	Manually stopped	16h 37m 15s	59,835
run135	JAXA115 Ax1 2	7:15:00 PM Feb 8 2024	10:23:10 AM Feb 9 2024	AC	Manually stopped	15h 8m 10s	54,490
run137	JAXA115 Ax1 2	6:04:00 PM Feb 9 2024	3:26:30 PM Feb 11 2024	AC	Manually stopped	45h 22m 30s	163,350
run140	JAXA115 Ax1 2	6:14:04 PM Feb 23 2024	4:32:29 AM Feb 26 2024	DC	Accidental temperature increase	58h 18m 25s	209,905

Gate valve CLOSE phase (Axion search)

Total ~ 4.5 days (Day earth)

	Chip ID	Observation start	Observation finish	DC or AC	Causes for stopping measurements	Total observation time	Total observation time (sec)	Day earth observation time (sec)	Night earth observatior time (sec)
run115	JAXA115 Ax1 2	1:00:00 PM Jan 28 2024	4:05:00 PM Jan 28 2024	DC	FLL jumping	3h 5m 0s	11,100	3,122	7,978
run117	JAXA115 Ax1 2	9:50:00 AM Jan 30 2024	1:33:55 PM Jan 30 2024	DC	FLL jumping	3h 43m 55s	13,435	13,435	0
		4:21:00 PM Jan 30 2024	5:14:00 PM Jan 30 2024	DC	Manually stopped	0h 53m 55s	3,180	2,766	414
run119	JAXA115 Ax1 2	-	-	AC	-				
run121	JAXA115 Ax1 2	9:10:00 AM Feb 1 2024	5:32:00 PM Feb 1 2024	AC	Manually stopped	8h 22m 0s	30,120	28,751	1,369
run123	JAXA115 Ax1 2	8:55:00 AM Feb 2 2024	5:47:00 PM Feb 2 2024	AC	Manually stopped	8h 52m 0s	31,920	29,713	2,207
run125	JAXA115 Ax1 2	9:04:00 AM Feb 3 2024	5:13:00 PM Feb 3 2024	AC	Manually stopped	8h 9m 0s	29,340	29,235	105
run127	JAXA115 Ax1 2	9:03:00 AM Feb 4 2024	5:13:00 PM Feb 4 2024	AC	Manually stopped	8h 10m 0s	29,400	29,357	43
run129	JAXA115 Ax1 2	9:01:00 AM Feb 5 2024	5:19:00 PM Feb 5 2024	AC	Manually stopped	8h 9m 0s	29,880	29,539	341
run131	JAXA115 Ax1 2	8:40:00 AM Feb 6 2024	5:17:00 PM Feb 6 2024	AC	Manually stopped	8h 37m 0s	31,020	30,861	159
run132	JAXA115 Ax1 2	10:50:00 AM Feb 7 2024	5:16:00 PM Feb 7 2024	AC	Manually stopped	6h 26m 0s	23,160	23,123	37
run134	JAXA115 Ax1 2	10:00:00 AM Feb 8 2024	5:18:00 PM Feb 8 2024	AC	Manually stopped	7h 18m 0s	26,280	26,184	96
run136	JAXA115 Ax1 2	10:26:00 AM Feb 9 2024	6:00:00 PM Feb 9 2024	AC	Manually stopped	7h 34m 0s	27,240	24,685	2,555
run138	JAXA115 Ax1 2	3:33:00 PM Feb 11 2024	2:15:15 PM Feb 14 2024	AC	Manually stopped	70h 42m 15s	254,535	112,075	142,460
run139	JAXA115 Ax1 2	11:07:00 AM Feb 16 2024	5:32:00 PM Feb 16 2024	AC	Manually stopped	6h 25m 0s	23,100	22,647	453

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

Yuta Yagi,

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber,

The Univ. of Tokyo, ISAS/JAXA Yuta Yagi,

Unexpected event

Conventionally follows a linear relationship

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

- Waveforms were observed where the pulse height remained the same, but the pulse area slightly differed.
- The slight waveform differences may potentially indicate distinctions between absorber events and strap events.
- It is essential to understand the events thoroughly and impose constraints on the axion observation data accordingly.

We're still in the process of understanding the events.

4.5 hours solar axion search with single-pixel TES 19

- Reporting select data with a more advanced understanding of events. Conducted about 4.5 hours of axion observation (run117)
- Seven events were measured.

Events No. 0 is associated with the TES substrate event.

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

Events No. 1 to No. 6 are attributed to electrical shot noise.

- Given the short observation time for the data used here, background events such as cosmic ray events were not observed.
- \rightarrow With improved waveform understanding in calibration phase, additional data can be incorporated, allowing for background rate calculations and axion mass constraints.

Future constraint on the axion mass

Using the obtained excitation rate from observations to place constraints on the axion mass.

$$R = 3.1 \times 10^{2} / \text{day/kg} \left(\frac{10^{6} \text{ GeV}}{f_{a}} \right)^{4} C^{4} \qquad \text{Moriyama 1995, revised}$$
$$m_{a} = \frac{\sqrt{z}}{1+z} \frac{f_{\pi}m_{\pi}}{f_{a}} = 1 \text{ eV} \frac{\sqrt{z}}{1+z} \frac{1.3 \times 10^{7}}{f_{a}/\text{GeV}} \quad (m_{\pi} = 139 \text{ MeV}, f_{\pi} = 93 \text{ MeV})$$

e.g. Namba 2007, Phys. lett. B

14.4-keV Solar Axion Search: Preliminary Results with a TES Microcalorimeter and Iron-57 Absorber, Yuta Yagi, The Univ. of Tokyo, ISAS/JAXA

995, revised

The plan is to impose a mass limit of a few keV or less based on short observations (a few hours) with single-pixel TES.

- \star TES microcalorimeter is promising for the most stringent bound for observations with 57Fe.
- \star Conducted the first solar axion observation using a TES with a 57Fe absorber.
- * Unexpected events were observed, and investigations are currently underway to understand the 14.4 keV
- t classification is established, preliminary constraints on the axion mass can be ★ Or applied, paving the way for fut the high-sensitivity observations with an array.

Design of the Observational Setup for Solar Axion Search with TES Microcalorimeters - Practical Configuration and Sensitivity -

