March 8th, 2024

Ultralight dark matter search with KAGRA -the O3GK result and toward the O4 analysis-

Jun'ya Kume (Univ. of Padova, INFN, RESCEU) on behalf of the KAGRA collaboration

Collaborators:

T. Fujimori, H. Fujimoto, T. Fujita, K. Komori,

Y. Manita, Y. Michimura, S. Morisaki,

A. Nishizawa, I. Obata Y. Oshima & H. Takidera

Ultralight vector dark matter search using data from the KAGRA O3GK run

(The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration) incl. J. Kume, S. Morisaki, Y. Michimura, K. Komori, A. Nishizawa, Y. Oshima

T. Fujimori,¹⁹⁰ H. Fujimoto,²⁶⁷ T. Fujita,^{306,36} Y. Manita,²⁹⁵ I. Obata,³⁰⁷ and H. Takidera²⁶⁷

(also available on https://dcc.ligo.org/P2300250/Public)

Our new pipeline has been approved

by the LVK research sub-group!

 \rightarrow to be developed for O4 data analysis

Our study has been promoting

"Science with KAGRA GW telescope"

though it's not on GW physics 😔

"Ultralight dark matter search with KAGRA"

Ultralight vector DM -target signal in O3GK analysis-

Pipeline construction based on stochasticity study

➤O3GK data analysis as a demonstration

• ULDM search with GW detector (e.g. LIGO 01/03, GE0600, ...)

Bosonic DM can have very light mass $m_{DM} \leq eV$ $\rightarrow O(10^{-14} - 10^{-11})eV/c^2$ testable with GW detector!

<u>spin-1 candidate</u>: (from gauged $U_D(1)$)

• dark photon A_{μ} $U_{B-L}(1)$: anomaly free!

- coupling $\epsilon_D e J_D^{\mu} A_{\mu}$ "Dark electric force"

Motivation to use KAGRA (Y. Michimura+ 2020)

employs sapphire/fused silica mirrors

 \rightarrow difference in Q_{B-L}/M enhances the sensitivity to VDM!

 $\rightarrow O(10^{-14} - 10^{-11}) \text{eV}/c^2$ testable with GW detector!

<u>spin-1 candidate</u>: (from gauged $U_D(1)$)

• dark photon A_{μ} $U_{B-L}(1)$: anomaly free!

- coupling $\epsilon_D e J_D^{\mu} A_{\mu}$ "Dark electric force"

• <u>Motivation to use KAGRA</u> (Y. Michimura+ 2020)

employs sapphire/fused silica mirrors

 \rightarrow difference in Q_{B-L}/M enhances the sensitivity to VDM!

KAGRA can be the best detector for specific masses!

- How can we search the signal efficiently...?

signal in length change enhanced!

DM signal in KAGRA's auxiliary length channels

Statistical fluctuation:

superposition of waves $\rightarrow \underline{\text{Gaussian dist}}$. $\langle \tilde{A}_i^*(f, t_0) \tilde{A}_i(f, t_1) \rangle$ characterized by $\tau \equiv 2\pi m_A / v_{vir}^2$

Spacial care in deriving upper bound on ϵ_{B-L}

Non-relativistic dispersion:

peak of spectrum: $f_c = m_A/2\pi$ <u>narrow width</u>: $\Delta f \sim f_c v_{DM}^2/c^2 \sim 10^{-6} f_c \simeq \underline{CW \text{ search}} \heartsuit$

Incoherently collecting spectra in Fourier space

<u> Xneither coherent nor monochromatic!!</u>

► Ultralight vector DM -target signal in O3GK analysis-

Pipeline construction based on stochasticity study

➤O3GK data analysis as a demonstration

Detection statistics inspired by CW search

inputs of pipeline:

Fourier Transform of data segment: $\tilde{d}(f_n; t_i)$ Noise PSD: $S(f_n; t_i) \rightarrow$ estimated by running median

$$\rho(f_c) \equiv \sum_{t_i, f_n} \frac{4|\tilde{d}(f_n; t_i)|^2}{TS(f_n; t_i)}$$

Incoherent sum of spectrum \rightarrow non-stationarity/detector rotation

Summation within the narrow band:

$$f_c \leq f_n \leq f_c (1 + \kappa v_{vir}^2/c^2)$$
 $\kappa = 3.17 \rightarrow 1\%$ loss in signal power

T = 30 min. ($\ll 1$ day, to avoid the effect of Earth rotation)

Gaussian noise only: χ^2 dist. with $2N_{bin}N_{ch}$ DoFs

95% percentile as a threshold for "detection"

"Ultralight dark matter search with KAGRA"

%random amp. of ULDM to be marginalized! (cf. deterministic treatment \rightarrow)

 \mathbb{P} Analytical likelihood in Nakatsuka+ 2022 \rightarrow numerically unstable...

Simulation-based evaluation:

$$\rho(f_c; \epsilon_D) = \mathcal{N}^2 + \epsilon_D \mathcal{N} \cdot \mathcal{S} + \epsilon_D^2 \mathcal{S}^2 \xleftarrow{} \epsilon_D \text{ factorized}$$
$$\mathcal{N}: 2N_{bin}N_{ch} \text{ unit Gaussian,} \quad \mathcal{S}: \langle \tilde{h}_X^* \tilde{h}_X \rangle \text{ and noise PSD}$$

- With analytically given $\langle \tilde{h}_X^*(f, t_0) \tilde{h}_X(f, t_1) \rangle$ ($\neq 0$ for $|t_1 t_0| < \tau$), 10⁵ realizations of \mathcal{N}^2 , $\mathcal{N} \cdot \mathcal{S}$, \mathcal{S}^2 are simulated for each f_c .
- varying ϵ_{B-L} to find; $\rho_{obs}(f_c; \epsilon_{B-L}^{95\%}) = 5\%$ percentile.

► Ultralight vector DM -target signal in O3GK analysis-

Pipeline construction based on stochasticity study

➢O3GK data analysis as a demonstration

- Data from KAGRA O3GK run
- MICH/PRCL length change

 $\delta L_{\text{MICH}} = \delta(\boldsymbol{l_x} - \boldsymbol{l_y}) \quad \delta L_{\text{PRCL}} = \delta[(\boldsymbol{l_x} + \boldsymbol{l_y})/2 + l_p]$

- calibration uncertainty 20%-30%

Xless reliable for lower freq.

- \rightarrow Lower limit of frequency to be analyzed: 15Hz
- O3GK: from 2020 April 7th to 21st
 - detector in science mode $\sim 53\%$

Xunusable segments due to injection (last 2~3 days)

 \rightarrow **<u>number of 30 min. chunks: 217</u>** ~ 4days (\ll 1yr)

"Ultralight dark matter search with KAGRA"

- Data from KAGRA 03GK run
- MICH/PRCL length change

 $\delta L_{\text{MICH}} = \delta(\boldsymbol{l_x} - \boldsymbol{l_y}) \quad \delta L_{\text{PRCL}} = \delta[(\boldsymbol{l_x} + \boldsymbol{l_y})/2 + l_p]$

- calibration uncertainty 20% - 30%

Xless reliable for lower freq.

- \rightarrow Lower limit of frequency to be analyzed: 15Hz
- O3GK: from 2020 April 7th to 21st
 - detector in science mode $\sim 53\%$

𝔆unusable segments due to injection (last 2∼3 days)

 \rightarrow **<u>number of 30 min. chunks: 217</u>** ~ 4days (\ll 1yr)

Demonstration of our pipeline with real data

Candidates and Veto procedure

"Ultralight dark matter search with KAGRA"

- Upper limit on the coupling constant
- For simplicity, upper limits are derived for all bins (including the "detected" ones)
- Smoothed over $\Delta f = 0.1$ Hz by collecting the maximum value of $\rho(f_c)$

Remarks:

 $\checkmark \left\langle \tilde{h}_X^*(f,t_0)\tilde{h}_X(f,t_1) \right\rangle$ matters for $m_A \lesssim 10^{-12} \text{eV}$

If improperly treated, bound gets too strong (e.g. comparison to deterministic signal in Nakatsuka+)

- \checkmark Consistent with $\propto T^{1/4}$ scaling at high mass
- \rightarrow comparison to the prediction in Michimura+ 2020.

<u>Xanother manifestation of ULDM "stochasticity"</u>

Simulation-based pipeline: proper upper limits regardless of data length, masses of DM

► Ultralight vector DM -target signal in O3GK analysis-

Pipeline construction based on stochasticity study

➢O3GK data analysis as a demonstration

Summary of O3GK analysis

- The first-time vector ULDM search using KAGRA data (from O3GK run)!

- **<u>A new pipeline</u>** is developed for DM signal search:
 - detection statistic inspired by CW search
 - veto making use of generic feature of ULDM
 - simulation based upper limit evaluation to deal with stochasticity
- Many lines (even after veto), less stringent bound on coupling constant…
 → With future upgrades, KAGRA could appreciate its uniqueness as VDM detector.
- Possible improvements on our pipeline \rightarrow Inclusion of DARM, vector polarization, ...

Toward O4 data analysis

vector and axion DM simultaneous search:

- Polarization optics installed at X/Y arm transmission
 - does not affect GW/VDM observation

axion DM search with KAGRA!!

※planned to start collecting data from O4b

Pipeline development:

- extension to ALP & spin-2 search (\rightarrow Y. Manita's talk), inclusion of DARM channel
- ALP search pipeline has been already applied to DANCE act1 (\rightarrow Y. Oshima, H. Fujimoto, <u>JK</u>+ 2023)

All the data products will be summarized in the O4 LVK DM paper.