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DM particles are something
new! A complete mystery!

Iwikipedia]
[Symmetry magazine]
Dark matter is all around us! 85% of the matter in the

universe is Dark Matter!
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DM particles are something
new! A complete mystery!

Dark matter is all around us! 85% of the matter in the
universe is Dark Matter!

Dark Matter is “cold”. It moves in non-relativistic
velocities (around us ~ 300 km/sec).
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Gravitational observations at many scales teach us
J that something is missing! That thing is Dark Matter!

DM particles are something
new! A complete mystery!

Dark matter is all around us! 85% of the matter in the
universe is Dark Matter!

Dark Matter is “cold”. It moves in non-relativistic
velocities (around us ~ 300 km/sec).

Small (if any) non-gravitational interactions. So if we
want to measure DM in a lab, we have to be smart!
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Axion Like Particles (ALPs)*

on CP proble l’g

V'v‘ mberg 1978 Wllczek 1978]

® Pseudo-scalars, pNGBs. Has derivative couplings™, e.g.:
(0, @)wysy*wlf,.

® Can be a component of Dark Matter (I assume all)

3 Introduction *(1 may accidentally say axions in this talk and | mean ALPs)
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If DM is ultralight, (m, < 30 eV), n, =

0.4 GeV 1 (mava )3

>
m,-cm> A3

a de—broglie 27

a = aycos(E t — k x) ~ aycos(m,t)

Ultralight ALPs behave like classical plane-waves!

(Mass™ and frequency are used interchangeably)

4 Interlude: Axions
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Z = gcu//l//a,ua ) '/_jyﬂ}/SW — H = — ba—l// ) Sl//

ba—l// — gcu//l// \/ zpa cos(mat) ' Va—l// [astro-ph/9501042]
- . . |
This is an effect linearin g, . !

Can we measure it linearly?

Hint:H., = —yBS)

geeman
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Describe the evolution of macroscopic spin systems

Creating macroscopic polarization
(generates a non-trivial steady state solution)

€D

Torque
(generates transverse from longitudinal) Decaying excitations

(causes stabilization)
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Magnetic field from (quantum)
point-like interactions

Binduced on Alk — 9% NobSNob

1k

(Sometimes important, but removed to simplify the talk)
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Sketching the Comagnetometer Response (1)

Spin Tilt ~ (magnetic response(ma)) * (Byy + by 1)

This is true for both noble and alkali
(Though the actual response, 7, and fields are different)

We only measure §,, Sy of the alkali, and,

(Alkall) — IlOlSG X/y + ‘%Noble (NOble)

x/y x/y

(Noble) =

x/y n01se,x/y
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noise

Alkali Spin <1 + A% - (Noble Response at ma) ) B

If (Noble Response at ma) = — 1/98, we are insensitive to magnetic noise!

The Compensation Point is defined as the magnetic field for which

(Noble Response at O) = — 1/9B. No magnetic noise for m, — 0!

> 10 Hz- h

nY

The magnetic subtraction stops working when m,,

14 Compensation Point Comagnetometer
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® There’s a huge potential for searching for ALP-nucleon
interactions with existing techniques.

® Electrons are very hard to work with due to their (i) wide
bandwidth and (ii) large response to background
magnetic fields.

® \\e need our own experiment!

16 Compensation Point Comagnetometer
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Comagnetometer is a broadband
detector. This was a resonant search at
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NASDUCK Floguet

®,

Noble Alkali

? [2023 Nature Comm., IMB, Shaham, Hochberg, § 5 [2022 Science Adv., IMB, Ronen Shaham :

i Kuflik, Volansky, Katz. A .’ }j ] j Katz, Volansky, Katz. A .'
The Compensation point A very fancy resonance search,
Comagnetometer is a broadband where both the Alkali and the
detector. This was a resonant search at noble were on-resonance.

a unique regime called “SERF”.
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Transverse vs. Longitudinal Magnetometry
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Transverse vs. Longitudinal Magnetometry

Until now:

Transverse Magnetometry: & ,X

From now on:

Longitudinal Magnetometry: <

5

(P.S: We're also going to drop the noble gas, and start using non-alkali metals)
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Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation
in fundamental constants (for example: &£ = m,ee — (m, + g4..P)ee)
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]

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation
in fundamental constants (for example: &£ = m,ee — (m, + g4..P)ee)

€
Bpermanent—magnet X :uBnparticles ~ - nparticles
e

If e or m, oscillate, this means B oscillates, and can be measured with a magnetometer

We can measure B, rather than B |

First experiment is ongoing by Sushkov et al.

21 Novel Magnetometry Techniques




22 Novel Magnetometry Techniques



Naive answer:
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Naive answer:

b J_,ALPF
(ma R a)res)z + [

Sx/y(t — 00) X

2
b J_,ALPF

((ma o a)res)z + FZ)FL

S(t = o0) x 1

03, is second order in the couplings!
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: spin based sensor is

Pt resonant for meV axions

y /’ BabyIAXO-RADES
” L . v F L A S H [Ciaran O’Hare’s GitHub, see references within]



24 Novel Magnetometry Techniques



At zero temperature, under B = B_Z (and no axions):

N,

spinsZ

(S(t)) =
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At zero temperature, under B = B_Z (and no axions):

N,

spinsZ

(S(t)) =

H=—-yB)S, and so [S,,H] # 0, measuring S, would

-7
induce quantum noise, known as the spin shot noise

\/ <Syg> ~ Nspins ~ <SZ>

N, spins
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At zero temperature, under B = B_Z (and no axions):

NyinsZ

spins

(S(t)) =

H=—-yB)S, and so [S,,H] # 0, measuring S, would

-7
induce quantum noise, known as the spin shot noise

(S,)
(S5) ~ 3/ Nepins
\ﬁ p A / spins

This shot noise does not exist when measuring . !
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b J_,ALPF

S(t—->00) x1-—
Z( ) ((ma o a)res)z + 1—’2)1_1L
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2
b J_,ALPF

<SZ(t - OO)> x1- ((ma o a)res)z T 1—’2)1_1L
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¢ [In progress. »"] |

2
b J_,ALPF

((ma o res)2 T 1—12)1_1L

<Sz(t — oo)> x | —

However

Due to the axions, [S,, H] # 0, so measuring

(S,) would induce a quantum noise \/(Szz)
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The relevant observable
(amplitude of shot noise
per square root bandwidth)

b 1,ALP

\/maX(10‘6ma, L) (TP / Nepins

\/ signal spectral density ~
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(ampltuce o shot nore LINEAR!

per square root bandwidth)

b 1,ALP

\/maX(10‘6ma, L) (TP / Nepins

\/ signal spectral density ~
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(ampltuce o shot nore LINEAR!

per square root bandwidth)

b 1,ALP

\/max(10‘6ma, L) (TP / Nepins

/

Axion width/detector bandwidth. A
wider bandwidth might be

beneficial as long as m, is unknown

\/ signal spectral density ~
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(ampltuce o shot nore LINEAR!

per square root bandwidth)

b 1,ALP

\/max(10‘6ma, ) (TP / Nepins

/ T

The longitudinal relaxati te,
Axion width/detector bandwidth. A © longitucinal relaxation rate
e S can be much smaller than 1.

beneficial as long as m, is unknown

\/ signal spectral density ~
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The relevant observable LI N EAR I
(amplitude of shot noise * Number of spins, usually
per square root bandwidth) one wants this to be big,

but here it’s not clear

b 1,ALP

\/max(10‘6ma, ) (TP / Nepins

/ T

The longitudinal relaxati te,
Axion width/detector bandwidth. A © longitucinal relaxation rate
e S can be much smaller than 1.

beneficial as long as m, is unknown

\/ signal spectral density ~
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Spin Shot Noise as an Observable

£ [In progress. « ] ‘

The relevant observable b
(amplitude of shot noise

per square root bandwidth)

' ‘\)a s, usuall
ot 2 «\a‘\\‘ -

The longitudinal relaxation rate,
can be much smaller than .

gan. A
“fi' “ e
s as m,, is unknown
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 The use of spin-based sensors to
search for ULDM has bloomed and
expanded in the last few years.
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Conclusions

 The use of spin-based sensors to
search for ULDM has bloomed and
expanded in the last few years.

e EXisting technologies can already
enhance the current capabillities, but...
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Conclusions

 The use of spin-based sensors to
search for ULDM has bloomed and
expanded in the last few years.

e EXisting technologies can already
enhance the current capabillities, but...

e With creativity, one can think of new
iIdeas, with many promising directions!
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Noble and Alkali Spin Detectors for Ultralight Coherent darK-matter

Ul

DUCK-matter &

(Degree in beakness school)

v Thanks for listening!

NASDUCK-matter
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