Quantum Magnetometry in Search of Dark Matter

[Planck/ESA]

[2006, Clowe et al]

Gravitational observations at many scales teach us that something is missing! That thing is Dark Matter!

2 Introduction

[Symmetry magazine]

Gravitational observations at many scales teach us that something is missing! That thing is Dark Matter!

DM particles are something new! A complete mystery!

2 Introduction

[wikipedia]

Gravitational observations at many scales teach us that something is missing! That thing is Dark Matter!

DM particles are something new! A complete mystery!

Dark matter is all around us! 85% of the matter in the universe is Dark Matter!

Gravitational observations at many scales teach us that something is missing! That thing is Dark Matter!

DM particles are something new! A complete mystery!

Dark matter is all around us! 85% of the matter in the universe is Dark Matter!

Dark Matter is "cold". It moves in non-relativistic velocities (around us $\sim 300 \text{ km/sec}$).

Gravitational observations at many scales teach us that something is missing! That thing is Dark Matter!

DM particles are something new! A complete mystery!

Dark matter is all around us! 85% of the matter in the universe is Dark Matter!

Dark Matter is "cold". It moves in non-relativistic velocities (around us $\sim 300 \text{ km/sec}$).

Small (if any) non-gravitational interactions. So if we want to measure DM in a lab, we have to be smart!

3 Introduction

• A solution to the strong CP problem, $\bar{\theta}_{QCD} \rightarrow a/f_a$.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

• A solution to the strong CP problem, $\bar{\theta}_{QCD} \rightarrow a/f_a$.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

• Pseudo-scalars, pNGBs. Has derivative couplings[±], e.g.: $(\partial_{\mu}a)\bar{\psi}\gamma_{5}\gamma^{\mu}\psi/f_{a}$.

• A solution to the strong CP problem, $\bar{\theta}_{QCD} \rightarrow a/f_a$.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

- Pseudo-scalars, pNGBs. Has derivative couplings[±], e.g.: $(\partial_{\mu}a)\bar{\psi}\gamma_{5}\gamma^{\mu}\psi/f_{a}.$
- Can be a component of Dark Matter (I assume all)

• A solution to the strong CP problem, $\bar{\theta}_{QCD} \rightarrow a/f_a$.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

- Pseudo-scalars, pNGBs. Has derivative couplings[±], e.g.: $(\partial_{\mu}a)\bar{\psi}\gamma_{5}\gamma^{\mu}\psi/f_{a}$.
- Can be a component of Dark Matter (I assume all)

•
$$m_a \propto \Lambda_{\rm QCD}^2 / f_a$$

Axion Like Particles (ALPs)*

- Pseudo-scalars, pNGBs. Has derivative couplings[±], e.g.: $(\partial_{\mu}a)\bar{\psi}\gamma_{5}\gamma^{\mu}\psi/f_{a}$.
- Can be a component of Dark Matter (I assume all)

Looking For Ultralight DM: Wave/Particle Duality

$$n_a = \frac{0.4 \text{ GeV}}{m_a \cdot \text{cm}^3}$$

Looking For Ultralight DM: Wave/Particle Duality

Looking For Ultralight DM: Wave/Particle Duality

$$a = a_0 \cos(E_a t - \vec{k}_a \vec{x}) \approx a_0 \cos(m_a t)$$

Ultralight ALPs behave like classical plane-waves! (Mass[±] and frequency are used interchangeably)

ALP-SM Interactions

ALP-SM Interactions

$$\mathscr{L} = g_{a\psi\psi}\partial_{\mu}a \cdot \bar{\psi}\gamma^{\mu}\gamma_{5}\psi \to H = -\vec{b}_{a-\psi}\cdot\vec{S}_{\psi}$$

$$\vec{b}_{a-\psi} = g_{a\psi\psi}\sqrt{2\rho_a}\cos(m_a t) \cdot \vec{v}_{a-\psi} \qquad \text{[astro-ph/9501042]}$$

$$\mathscr{L} = g_{a\psi\psi}\partial_{\mu}a \cdot \bar{\psi}\gamma^{\mu}\gamma_{5}\psi \to H = -\vec{b}_{a-\psi}\cdot\vec{S}_{\psi}$$

$$\vec{b}_{a-\psi} = g_{a\psi\psi}\sqrt{2\rho_a}\cos(m_a t) \cdot \vec{v}_{a-\psi} \qquad \text{[astro-ph/9501042]}$$

This is an effect linear in $g_{a\psi\psi}!$

$$\mathscr{L} = g_{a\psi\psi}\partial_{\mu}a \cdot \bar{\psi}\gamma^{\mu}\gamma_{5}\psi \to H = -\vec{b}_{a-\psi}\cdot\vec{S}_{\psi}$$

$$\vec{b}_{a-\psi} = g_{a\psi\psi}\sqrt{2\rho_a}\cos(m_a t) \cdot \vec{v}_{a-\psi} \qquad \text{[astro-ph/9501042]}$$

This is an effect linear in $g_{a\psi\psi}!$

Can we measure it linearly?

$$\mathscr{L} = g_{a\psi\psi}\partial_{\mu}a \cdot \bar{\psi}\gamma^{\mu}\gamma_{5}\psi \to H = -\vec{b}_{a-\psi}\cdot\vec{S}_{\psi}$$

$$\vec{b}_{a-\psi} = g_{a\psi\psi}\sqrt{2\rho_a}\cos(m_a t) \cdot \vec{v}_{a-\psi} \qquad \text{[astro-ph/9501042]}$$

This is an effect linear in $g_{a\psi\psi}!$

Can we measure it linearly?

(Hint :
$$H_{zeeman} = -\gamma \vec{B} \vec{S}$$
)

Today's Papers

[2020 JHEP, IMB, Hochberg, Kuflik, Volansky.]

[2022 Science Adv., IMB, Ronen, Shaham, Katz, Volansky, Katz. 👗 🎲 💭]

[2023 Nature Comm., IMB, Shaham, Hochberg, Kuflik, Volansky, Katz.

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Today's Papers

[2020 JHEP, IMB, Hochberg, Kuflik, Volansky.]

[2022 Science Adv., IMB, Ronen, Shaham, Katz, Volansky, Katz. 👗 📷

[2023 Nature Comm., IMB, Shaham, Hochberg, Kuflik, Volansky, Katz.

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Yonit Hochberg

Roy Shaham

Victor Flambaum

Eric Kuflik

Ori Katz

Igor Samsonov

Gil Ronen

Or Katz

Dmitry Budker

Alex Sushkov

Oleg Tretiak

Spin-Based (Co)Magnetometry

Describe the evolution of macroscopic spin systems

 $\frac{\dot{\tilde{S}}}{\tilde{S}}$ –

Describe the evolution of macroscopic spin systems

(generates transverse from longitudinal)

Describe the evolution of macroscopic spin systems

Describe the evolution of macroscopic spin systems

Creating macroscopic polarization (generates a non-trivial steady state solution)

(Glass) Cell

(Glass) Cell Alkali Vapor Noble Gas

(Glass) Cell Alkali Vapor Noble Gas

(Glass) Cell Alkali Vapor Noble Gas

Lasers

(Co)magnetometer Ingredients List

(Glass) Cell Alkali Vapor Noble Gas

Lasers

10

(Co)magnetometer **Ingredients List**

(Glass) Cell Alkali Vapor **Noble Gas**

Lasers

Magnetometer → Comagnetometer: Inter-species collisions

Magnetic field from (quantum) point-like interactions

Magnetometer → Comagnetometer: Inter-species collisions

Magnetic field from (quantum) point-like interactions

$$B_{\text{induced on Alk}} = \mathscr{B}_{\text{Nob}} S_{\text{Nob}}$$

$$B_{\text{induced on Nob}} = \mathscr{B}_{\text{Alk}} S_{\text{Alk}}$$

Magnetometer → Comagnetometer: Inter-species collisions

Magnetic field from (quantum) point-like interactions

$$B_{\text{induced on Alk}} = \mathscr{B}_{\text{Nob}} S_{\text{Nob}}$$

(Sometimes important, but removed to simplify the talk)

Spin Tilt ~ (magnetic response (m_a)) · $(B_{x/y} + b_{x/y}/\gamma)$

Spin Tilt ~ (magnetic response (m_a)) · $(B_{x/y} + b_{x/y}/\gamma)$

This is true for both noble and alkali

(Though the actual response, γ , and fields are different)

Spin Tilt ~ (magnetic response (m_a)) · $(B_{x/y} + b_{x/y}/\gamma)$

This is true for both noble and alkali

(Though the actual response, γ , and fields are different)

We only measure
$$S_x$$
, S_y of the alkali, and,

$$B_{x/y}(\text{Alkali}) = B_{\text{noise}, x/y} + \mathscr{B}_{\text{Noble}} \cdot S_{x/y}(\text{Noble})$$

$$B_{x/y}(\text{Noble}) = B_{\text{noise},x/y}$$

Alkali Spin = (Technical Noise) +

Alkali Spin = (Technical Noise)+

+(Alkali Response at
$$m_a$$
) × $\left(B_{\text{noise}} + \frac{b_{\text{ALP}-\text{Alk}}}{\gamma_{\text{Alk}}} + B_{\text{ind}}\right)$

Alkali Spin = (Technical Noise)+

Direct noise measurement

+ (Alkali Response at
$$m_a$$
) × $\left(B_{\text{noise}} + \frac{b_{\text{ALP}-\text{Alk}}}{\gamma_{\text{Alk}}} + B_{\text{ind}}\right)$

Alkali Spin = (Technical Noise)+

Direct noise measurement

+ (Alkali Response at
$$m_a$$
) × $\left(B_{\text{noise}} + \frac{b_{\text{ALP}-\text{Alk}}}{\gamma_{\text{Alk}}} + B_{\text{ind}}\right)$
Direct ALP-Alkali interaction

Alkali Spin = (Technical Noise)+

Direct noise measurement + (Alkali Response at m_a) × $\left(B_{\text{noise}} + \frac{b_{\text{ALP-Alk}}}{\gamma_{\text{Alk}}} + B_{\text{ind}}\right)$ Direct ALP-Alkali interaction

With the induced/indirect magnetic fields,

$$B_{\text{ind}} = \mathscr{B} \cdot (\text{Noble Response at } m_a) \left(B_{\text{noise}} + \frac{b_{\text{ALP-Nob}}}{\gamma_{\text{Nob}}} \right)$$

Alkali Spin = (Technical Noise)+

Direct noise measurement + (Alkali Response at m_a) × $\left(B_{\text{noise}} + \frac{b_{\text{ALP-Alk}}}{\gamma_{\text{Alk}}} + B_{\text{ind}}\right)$ Direct ALP-Alkali interaction

With the induced/indirect magnetic fields,

Indirect noise measurement

$$B_{\text{ind}} = \mathscr{B} \cdot (\text{Noble Response at } m_a) \left(B_{\text{noise}} + \frac{b_{\text{ALP-Nob}}}{\gamma_{\text{Nob}}} \right)$$

Alkali Spin = (Technical Noise)+

Direct noise measurement + (Alkali Response at m_a) × $\left(B_{\text{noise}} + \frac{b_{\text{ALP}-\text{Alk}}}{\gamma_{\text{Alk}}} + B_{\text{ind}}\right)$ Direct ALP-Alkali interaction

With the induced/indirect magnetic fields,

Indirect noise measurement

 $B_{\text{ind}} = \mathscr{B} \cdot (\text{Noble Response at } m_a)$

$$\left(B_{\text{noise}} + \frac{b_{\text{ALP-Nob}}}{\gamma_{\text{Nob}}}\right)$$

Indirect ALP-Noble interaction

Alkali Spin $\propto \left(1 + \mathscr{B} \cdot (\text{Noble Response at } m_a)\right) B_{\text{noise}}$

Alkali Spin $\propto \left(1 + \mathscr{B} \cdot (\text{Noble Response at } m_a)\right) B_{\text{noise}}$

If (Noble Response at m_a) = $-1/\mathscr{B}$, we are insensitive to magnetic noise!

Alkali Spin $\propto \left(1 + \mathscr{B} \cdot (\text{Noble Response at } m_a)\right) B_{\text{noise}}$

If (Noble Response at m_a) = $-1/\mathscr{B}$, we are insensitive to magnetic noise!

The Compensation Point is defined as the magnetic field for which (Noble Response at 0) = $-1/\mathscr{B}$. No magnetic noise for $m_a \rightarrow 0!$

Alkali Spin $\propto \left(1 + \mathscr{B} \cdot (\text{Noble Response at } m_a)\right) B_{\text{noise}}$

If (Noble Response at m_a) = $-1/\mathscr{B}$, we are insensitive to magnetic noise!

The Compensation Point is defined as the magnetic field for which (Noble Response at 0) = $-1/\mathscr{B}$. No magnetic noise for $m_a \rightarrow 0!$

The magnetic subtraction stops working when $m_a \gtrsim 10 \text{ Hz} \cdot h$

Results

 \searrow

[2020 JHEP, IMB, Hochberg, Kuflik, Volansky.

Results

[2020 JHEP, IMB, Hochberg, Kuflik, Volansky.

• There's a huge potential for searching for ALP-nucleon interactions with existing techniques.

- There's a huge potential for searching for ALP-nucleon interactions with existing techniques.
- Electrons are very hard to work with due to their (i) wide bandwidth and (ii) large response to background magnetic fields.

- There's a huge potential for searching for ALP-nucleon interactions with existing techniques.
- Electrons are very hard to work with due to their (i) wide bandwidth and (ii) large response to background magnetic fields.
- We need our own experiment!

Noble and Alkali Spin Detectors for Ultralight Coherent darK matter

Noble and Alkali Spin Detectors for Ultralight Coherent darK matter

NASDUCK

Existing NASDUCK Experiments

NASDUCK SERF

[2023 Nature Comm., IMB, Shaham, Hochberg, Kuflik, Volansky, Katz.

NASDUCK Floquet

[2022 Science Adv., IMB, Ronen, Shaham, Katz, Volansky, Katz. 👗 😭 🦳]

Existing NASDUCK Experiments

[2023 Nature Comm., IMB, Shaham, Hochberg, Kuflik, Volansky, Katz. **NASDUCK Floquet**

[2022 Science Adv., IMB, Ronen, Shaham, Katz, Volansky, Katz. 👗 😭 💮]

The Compensation point Comagnetometer is a broadband detector. This was a resonant search at a unique regime called "SERF".

Existing NASDUCK Experiments

NASDUCK SERF

[2023 Nature Comm., IMB, Shaham, Hochberg, Kuflik, Volansky, Katz.

The Compensation point Comagnetometer is a broadband detector. This was a resonant search at a unique regime called "SERF".

A very fancy resonance search, where both the Alkali and the noble were on-resonance.

Noble Alkali [2022 Science Adv., IMB, Ronen, Shaham, Katz, Volansky, Katz.

NASDUCK Floquet

NASDUCK Floquet Results

Transverse vs. Longitudinal Magnetometry

Until now:

From now on:

20 Novel Magnetometry Techniques

Transverse vs. Longitudinal Magnetometry

Until now:

Transverse Magnetometry:

From now on:

20 Novel Magnetometry Techniques
Transverse vs. Longitudinal Magnetometry

Until now:

Transverse Magnetometry:

From now on:

Longitudinal Magnetometry:

Transverse vs. Longitudinal Magnetometry

Until now:

Transverse Magnetometry:

From now on:

Longitudinal Magnetometry:

(P.S: We're also going to drop the noble gas, and start using non-alkali metals)

20 Novel Magnetometry Techniques

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation in fundamental constants (for example: $\mathscr{L} = m_e \bar{e} e \rightarrow (m_e + g_{\phi ee} \phi) \bar{e} e$)

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation in fundamental constants (for example: $\mathscr{L} = m_e \bar{e}e \rightarrow (m_e + g_{\phi ee}\phi)\bar{e}e$)

$$B_{\text{permanent-magnet}} \propto \mu_B n_{\text{particles}} \sim \frac{e}{m_e} n_{\text{particles}}$$

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation in fundamental constants (for example: $\mathscr{L} = m_e \bar{e}e \rightarrow (m_e + g_{\phi ee}\phi)\bar{e}e$)

$$B_{\text{permanent-magnet}} \propto \mu_B n_{\text{particles}} \sim \frac{e}{m_e} n_{\text{particles}}$$

If e or m_e oscillate, this means B oscillates, and can be measured with a magnetometer

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation in fundamental constants (for example: $\mathscr{L} = m_e \bar{e}e \rightarrow (m_e + g_{\phi ee}\phi)\bar{e}e$)

$$B_{\text{permanent-magnet}} \propto \mu_B n_{\text{particles}} \sim \frac{e}{m_e} n_{\text{particles}}$$

If e or m_e oscillate, this means B oscillates, and can be measured with a magnetometer

$$\delta \vec{B} \propto \vec{B}$$

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation in fundamental constants (for example: $\mathscr{L} = m_e \bar{e}e \rightarrow (m_e + g_{\phi ee}\phi)\bar{e}e$)

$$B_{\text{permanent-magnet}} \propto \mu_B n_{\text{particles}} \sim \frac{e}{m_e} n_{\text{particles}}$$

If e or m_e oscillate, this means B oscillates, and can be measured with a magnetometer

$$\delta \overrightarrow{B} \propto \overrightarrow{B}$$

We can measure B_z rather than B_\perp

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation in fundamental constants (for example: $\mathscr{L} = m_e \bar{e}e \rightarrow (m_e + g_{\phi ee}\phi)\bar{e}e$)

$$B_{\text{permanent-magnet}} \propto \mu_B n_{\text{particles}} \sim \frac{e}{m_e} n_{\text{particles}}$$

If e or m_e oscillate, this means B oscillates, and can be measured with a magnetometer

21 Novel Magnetometry Techniques

Can Longitudinal Magnetometry be used for ALPs?

Can Longitudinal Magnetometry be used for ALPs?

Naive answer:

Can Longitudinal Magnetometry be used for ALPs?

Naive answer:

$$S_{x/y}(t \to \infty) \propto \frac{b_{\perp,ALP}\Gamma}{(m_a - \omega_{\rm res})^2 + \Gamma^2}$$

$$S_z(t \to \infty) \propto 1 - \frac{b_{\perp,ALP}^2 \Gamma}{((m_a - \omega_{res})^2 + \Gamma^2) \Gamma_L}$$

δS_z is second order in the couplings!

(Green are astro-bounds)

23 Novel Magnetometry Techniques

At zero temperature, under
$$\overrightarrow{B} = B_z \hat{z}$$
 (and no axions):

$$\langle \vec{S}(t) \rangle = \frac{N_{\rm spins} \hat{z}}{2}$$

At zero temperature, under $\overrightarrow{B} = B_z \hat{z}$ (and no axions):

$$\langle \vec{S}(t) \rangle = \frac{N_{\rm spins} \hat{z}}{2}$$

 $H = -\gamma B_z S_z$, and so $[S_x, H] \neq 0$, measuring S_x would induce quantum noise, known as the **spin shot noise**

$$\sqrt{\langle S_x^2 \rangle} \sim \sqrt{N_{\text{spins}}} \sim \frac{\langle S_z \rangle}{\sqrt{N_{\text{spins}}}}$$

24 Novel Magnetometry Techniques

At zero temperature, under $\overrightarrow{B} = B_z \hat{z}$ (and no axions):

$$\langle \vec{S}(t) \rangle = \frac{N_{\rm spins} \hat{z}}{2}$$

 $H = -\gamma B_z S_z$, and so $[S_x, H] \neq 0$, measuring S_x would induce quantum noise, known as the **spin shot noise**

$$\sqrt{\langle S_x^2 \rangle} \sim \sqrt{N_{\text{spins}}} \sim \frac{\langle S_z \rangle}{\sqrt{N_{\text{spins}}}}$$

This shot noise does not exist when measuring $S_z!$

Axion Longitudinal Signal

$$S_z(t \to \infty) \propto 1 - \frac{b_{\perp,ALP}^2 \Gamma}{((m_a - \omega_{res})^2 + \Gamma^2) \Gamma_L}$$

Axion Longitudinal Signal

[In progress. 💬]

$$\left\langle S_z(t \to \infty) \right\rangle \propto 1 - \frac{b_{\perp,ALP}^2 \Gamma}{((m_a - \omega_{res})^2 + \Gamma^2) \Gamma_L}$$

Axion Longitudinal Signal

[In progress. 💬]

$$\left\langle S_z(t \to \infty) \right\rangle \propto 1 - \frac{b_{\perp,ALP}^2 \Gamma}{((m_a - \omega_{res})^2 + \Gamma^2) \Gamma_L}$$

However

Due to the axions, $[S_z, H] \neq 0$, so measuring

 $\langle S_z \rangle$ would induce a quantum noise $\sqrt{\langle S_z^2 \rangle}$

25 Novel Magnetometry Techniques

 The use of spin-based sensors to search for ULDM has bloomed and expanded in the last few years.

- The use of spin-based sensors to search for ULDM has bloomed and expanded in the last few years.
- Existing technologies can already enhance the current capabilities, but...

- The use of spin-based sensors to search for ULDM has bloomed and expanded in the last few years.
- Existing technologies can already enhance the current capabilities, but...
- With creativity, one can think of new ideas, with many promising directions!

Noble and Alkali Spin Detectors for Ultralight Coherent darK-matter

DUCK-matter

(Degree in beakness school)

Thanks for listening!

NASDUCK-matter

