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2 Introduction

Small (if any) non-gravitational interactions. So if we 
want to measure DM in a lab, we have to be smart!

DM I don’t feel 
anything

[wikipedia] 

DM particles are something 
new! A complete mystery!
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Axion Like Particles (ALPs)*

*(I may accidentally say axions in this talk and I mean ALPs)
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Looking For Ultralight DM: Wave/Particle Duality

4 Interlude: Axions

a = a0 cos(Eat − ⃗ka ⃗x) ≈ a0 cos(mat)

If DM is ultralight, ( ),                                ma ≲ 30 eV >
1

λ3
de−broglie

= ( mava

2π )
3

na =
0.4 GeV
ma ⋅ cm3

Ultralight ALPs behave like classical plane-waves!

(Mass  and frequency are used interchangeably)±
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ALP-Spin interaction

This is an effect linear in !   gaψψ

b⃗a−ψ = gaψψ 2ρa cos(mat) ⋅ ⃗va−ψ [astro-ph/9501042]

Can we measure it linearly?

ℒ = gaψψ∂μa ⋅ ψ̄γμγ5ψ → H = − b⃗a−ψ ⋅ ⃗Sψ

Introduction

(Hint : )Hzeeman = − γ ⃗B ⃗S
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9 Spin-Based (Co)Magnetometry

Bloch Equations

Torque 
 (generates transverse from longitudinal) Decaying excitations


(causes stabilization)

Creating macroscopic polarization 
 (generates a non-trivial steady state solution) 

· ⃗S = (γ ⃗B + b⃗) × ⃗S − Γ ⃗S + R ̂z
· ⃗S = (γ ⃗B + b⃗) × ⃗S
· ⃗S = (γ ⃗B + b⃗) × ⃗S − Γ ⃗S
· ⃗S =

Describe the evolution of macroscopic spin systems
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Magnetometer  Comagnetometer:

Inter-species collisions

→

Alk Nob

Alk Nob

Nob
Alk

(Rapidly)

Magnetic field from (quantum) 
point-like interactions

ℬNobSNob

Binduced on Nob =

Binduced on Alk =

ℬAlkSAlk

(Sometimes important, but removed to simplify the talk)
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Sketching the Comagnetometer Response (1)

Spin Tilt ∼ (magnetic response(ma)) ⋅ (Bx/y + bx/y/γ)

This is true for both noble and alkali

(Though the actual response, , and fields are different)γ

We only measure  of the alkali, and,Sx, Sy

Bx/y(Alkali) = Bnoise,x/y + ℬNoble ⋅ Sx/y(Noble)

Bx/y(Noble) = Bnoise,x/y

Spin-Based (Co)magnetometry 
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14 Compensation Point Comagnetometer

Detector Noise Response

Alkali Spin ∝ (1 + ℬ ⋅ (Noble Response at ma)) Bnoise

If , we are insensitive to magnetic noise!(Noble Response at ma) = − 1/ℬ

The Compensation Point is defined as the magnetic field for which  
. No magnetic noise for !(Noble Response at 0) = − 1/ℬ ma → 0

The magnetic subtraction stops working when ma ≳ 10 Hz ⋅ h
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Results

The smoothness of the bound is 
not real! Recent work by Lee et 

al with access to raw data 
computed the full result!
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cooling

Blue=New results from old comagnetometers

[2020 JHEP, IMB, Hochberg, Kuflik, Volansky.                   ]



Lessons Learned

16 Compensation Point Comagnetometer



Lessons Learned

• There’s a huge potential for searching for ALP-nucleon 
interactions with existing techniques.

16 Compensation Point Comagnetometer



Lessons Learned

• There’s a huge potential for searching for ALP-nucleon 
interactions with existing techniques.

• Electrons are very hard to work with due to their (i) wide 
bandwidth and (ii) large response to background 
magnetic fields.

16 Compensation Point Comagnetometer



Lessons Learned

• There’s a huge potential for searching for ALP-nucleon 
interactions with existing techniques.

• Electrons are very hard to work with due to their (i) wide 
bandwidth and (ii) large response to background 
magnetic fields.

• We need our own experiment!

16 Compensation Point Comagnetometer
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18 NASDUCK

NASDUCK Floquet

Noble AlkaliAlkali

[2022 Science Adv., IMB, Ronen, Shaham, 
Katz, Volansky, Katz.                               ]

NASDUCK SERF

[2023 Nature Comm., IMB, Shaham, Hochberg, 
Kuflik, Volansky, Katz.                                   ]    

The Compensation point 
Comagnetometer is a broadband 
detector. This was a resonant search at 
a unique regime called “SERF”. 

A very fancy resonance search, 
where both the Alkali and the 
noble were on-resonance.
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NASDUCK Floquet Results

Projected reach for a slightly 
more advanced system( )

Astro
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20 Novel Magnetometry Techniques

Until now:

From now on:

Transverse Magnetometry:

Longitudinal Magnetometry:

(P.S: We’re also going to drop the noble gas, and start using non-alkali metals)
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21 Novel Magnetometry Techniques

Since coupling constants are scalars, scalar DM (not ALPs) can mimic variation 
in fundamental constants (for example: )ℒ = meēe → (me + gϕeeϕ)ēe

If  or  oscillate, this means  oscillates, and can be measured with a magnetometere me B

Bpermanent−magnet ∝ μBnparticles ∼
e

me
nparticles

First experiment is ongoing by Sushkov et al.

We can measure  rather than Bz B⊥

[2023 PRD, IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak.  ] 

δ ⃗B ∝ ⃗B
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Naive answer:

NO!
Sz(t → ∞) ∝ 1 −

b2
⊥,ALPΓ

((ma − ωres)2 + Γ2)ΓL

 is second order in the couplings!δSz

Sx/y(t → ∞) ∝
b⊥,ALPΓ

(ma − ωres)2 + Γ2
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Not a projection,

a “theoretical limit”

Projections

[Ciaran O’Hare’s GitHub, see references within]

At 10 Teslas, an electron-
spin based sensor is 
resonant for  axionsmeV

Should we try to measure ALPs?

QCD Axions 

(highly motivated)

Future Projections
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At zero temperature, under  (and no axions): ⃗B = Bz ̂z

⟨ ⃗S(t)⟩ =
Nspins ̂z

2

This shot noise does not exist when measuring !Sz

, and so  , measuring  would 
induce quantum noise, known as the spin shot noise
H = − γBzSz [Sx, H] ≠ 0 Sx

⟨S2
x ⟩ ∼ Nspins ∼

⟨Sz⟩

Nspins
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Axion Longitudinal Signal

25 Novel Magnetometry Techniques

Due to the axions, , so measuring 

 would induce a quantum noise 

[Sz, H] ≠ 0

⟨Sz⟩ ⟨S2
z ⟩

[In progress.  ] 

Sz(t → ∞) ∝ 1 −
b2

⊥,ALPΓ
((ma − ωres)2 + Γ2)ΓL

⟨Sz(t → ∞)⟩

However
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Spin Shot Noise as an Observable

26 Novel Magnetometry Techniques

signal spectral density ∼
b⊥,ALP

max(10−6ma, Γ2)(ΓL) Nspins

Axion width/detector bandwidth. A 
wider bandwidth might be 
beneficial as long as  is unknownma

The longitudinal relaxation rate,

 can be much smaller than .Γ

Number of spins, usually 
one wants this to be big, 
but here it’s not clear

[In progress.  ] 

LINEAR!The relevant observable 
(amplitude of shot noise 
per square root bandwidth)

Many challenges for actual 

implementation but also many 

possibilities!
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• The use of spin-based sensors to 
search for ULDM has bloomed and 
expanded in the last few years.

• Existing technologies can already 
enhance the current capabilities, but… 

•With creativity, one can think of new 
ideas, with many promising directions!



DUCK-matter

NASDUCK-matter

Noble and Alkali Spin Detectors for Ultralight Coherent darK-matter

(Degree in beakness school)

Thanks for listening!

3σ

4σ

5σ!
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