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Neutrinos have mass!

Neutrinos have mass!

Super-Kamiokande & SNO (2015)

From Kamland Result
( Phys.Rev.Lett. 100 (2008) )

Pee = 1− sin2 2θ sin
(
∆m2L
4Eν

)

∆m2 = m2
ν2 −m2

ν1

Thus mν2 ̸= mν1
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We don’t know the mass scale

What we know today:
(See PDG)

1) At leas 3 neutrinos

2) mν1 ̸= mν2 ̸= mν3 (at least 2 are non-zero!)

3) ∆m2
21 ≈ 7.45× 10−5 eV2 and |∆m2

31| ≈ 2.4× 10−3 eV2

4)
∑

mν < 0.13 eV at 95% C. L.

We don’t know:

mν1 < mν3 or mν3 < mν1 and mlightest =?

To be solved by
T2HK + JUNO + DUNE
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Hard to measure ν mass!

Measuring mlightest is really hard!

Notice that it is at most ∼ 0.1 eV = 10−7 times smaller than me (could be even 0)!

- β-decay end-point: mν < 0.2 eV (future exp!)
(KATRIN Collaboration, ”Katrin design report“)

- 0νββ : Only works if ν are Majorana and if it is not in the funnel region
(M. J. Dolinsk et. al. , ”ARNPS 69 (2019) 219–251“)

- Kinematics of CνB : Very hard to measure...
(J. Alvey et. al. , ”PRD 105 6 (2022) 063501“)

- RENP: New proposal, probably needs technological advances..
(M. Yoshimura , ”PRD 75, 113007 (2007)“)

- Flight time delay of Supernovae ν: We need a supernova and mν < 1 eV...
(J.-S. Lu et. al, ”JCAP 05 (2015) 044“)
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That is where our best bound comes from:
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Cosmology: our best option

Cosmology is the most promising!
(see PDG)

Neutrinos decouple from the plasma at Tγ ∼ 1MeV

Today’s neutrino temperature is: Tν ∼ 1.95K ∼ 10−4 eV (at least 2 ν’s are non-relativistic!)

Non-relativistc ν suppresses the Sachs–Wolfe effect of CMB

Also, ν free-streaming length changes matter power-spectrum

Both are sensitive to ρν ≈ nν
∑

ν mν :

That is where our best bound comes from:
Plank2018 (CMB) and DES:

∑
mν < 0.13 eV at 95% C. L.

Future:
∑

mν < 0.03 eV at 95% C. L.
(L. Amendola et al. , LRR 21 no. 1, (2018) 2)
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Complementary: Gravitational Focusing

Our work shows the power of complementing traditional cosmological measurements
with the unexplored process of gravitational focusing between ν and DM.

(See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)
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Complementary: Gravitational Focusing

Our work shows the power of complementing traditional cosmological measurements
with the unexplored process of gravitational focusing between ν and DM.

(See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)

The key idea:

- ν and DM have a non-zero relative background velocity vνc

- As DM accumulates in halos. The vνc distorts both δc and δν .

- Both δc and δν guides galaxy distribution δg, which we can observe.

- In fact, vνc breaks (locally) the isotopy and generates a distinct δg signal.
(Imaginary part of the galaxy power spectrum)
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Let’s check an intuitive picture

Relic ν

vνc

Relic ν

∆p

∆p

cDM Halo

Straightforward Newton mechanics: ∆ϕ− π ∝ m2
ν

∆p ∼ (−1− cos∆ϕ)p ∝ m4
νp
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Looks like a drag force

Let’s check an intuitive picture

Relic ν

vνc

Relic ν

∆p

∆p

cDM Halo

Straightforward Newton mechanics: ∆ϕ− π ∝ m2
ν

∆p ∼ (−1− cos∆ϕ)p ∝ m4
νp ∝ m4

ν!!!!!
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Looks like a drag force

Let’s check an intuitive picture

Relic ν

vνc

Relic ν

∆p

∆p

cDM Halo

Straightforward Newton mechanics: ∆ϕ− π ∝ m2
ν

Full calculation: ∆p ∝ m4
ν +

π2

5 m2
νT

2
ν + 14

15π
4T 4

ν
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Looks like a drag force

Let’s check an intuitive picture

Relic ν

vνc

Relic ν

∆p

∆p

cDM Halo

Straightforward Newton mechanics: ∆ϕ− π ∝ m2
ν

Full calculation: ∆p ∝ m4
ν +

π2

5 m2
νT

2
ν + 14

15π
4T 4

ν

∃ γ, but is small (Tγ ≪ mν)
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Relative velocity is crucial

A non-zero relative velocity is needed

DM Halo

From: C. Nascimento & M. Loverde, JCAP 11 (2023) 036
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A non-zero relative velocity is needed
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Relative velocity is crucial

A non-zero relative velocity is needed

A non-zero relative velocity appears in small scales due to the mass difference of ν and DM!
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z = 0 mν1
= 0.05 eV

mν1
= 0.1 eV

mν1
= 0.2 eV

mν1
= 0.4 eV

vνc power-spectrum (Classy package): From: C. Okol et. al. MNRAS 468 no. 2, (2017) 2164–2175

vνc ̸= 0 also confirmed by N-body simulations
(D. Inma et. al. PRD 92 no. 2, (2015) 023502)
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We need two galaxy populations!

We actually need α ̸= β:

Im
[
δ̃gα,RSDδ̃

∗
gβ,RSD

]
= −(bαc b

β
ν − bαν b

β
c )δ̃2m0ϕ̃− (bαc − bβc )

µ2
k
H δ̃m0(

˙̃
δm0ϕ̃+ δ̃m0

˙̃
ϕ)

+(bαν − bβν )
µ2
k
H

˙̃
δm0δ̃m0ϕ̃

with ϕ̃ ≡ Im
[

δ̃m
δ̃m0

]
∝ |vνc|m4

ν
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Also, for ∆b ≡ bα − bβ larger, larger signal.
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δm0δ̃m0ϕ̃

with ϕ̃ ≡ Im
[

δ̃m
δ̃m0

]
∝ |vνc|m4

ν

Also, for ∆b ≡ bα − bβ larger, larger signal.

We optimized/illustrate the analysis for the DESI survey.
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DESI can measure the effect!

The Dark Energy Spectroscopic Instrument (DESI):
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DESI can measure the effect!

The Dark Energy Spectroscopic Instrument (DESI):

Ground-based telescope: ∼ 40 million galaxies/quasars & 14,000 square degree of the sky
Photo from desi.lbl.gov

- 10 million bright galaxies sample
(z < 0.6)

- 30 million faint galaxies samples
(0.6 < z < 1.6)

(i) Luminous red galaxies (LRG)
(ii) Emission line galaxies (ELG)
(iii) Quasi-stellar objects (QSO)

Natural separation and ̸= bc!
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Optimizing by mass spliting

It would be nice to use the BGS
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Separate galaxies by their host halo mass
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Optimizing by mass spliting

It would be nice to use the BGS

But we need two galaxy samples (at same z) with ̸= bias...

We use the idea by D. Ginzburg and V. Desjacques, MNRAS 495, 1,932-942 (2020):

Separate galaxies by their host halo mass

Halo mass can be inferred: X. Yang et al. AJ 909 no. 2, (2021) 143

∆ log10Mh/M⊙h
−1 ∼ 0.4
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Optimal Mh ∼ 1013.75M⊙

Larger halo mass, larger bias, but less galaxies...
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Almost 3σ for IO guaranteed!

Finally our result:
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Improved mass scale determination!

We also checked the potential for measuring the neutrino mass scale
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Improved mass scale determination!

We also checked the potential for measuring the neutrino mass scale

That is, comparing signal with different mν values,

−2 lnL =
(
Signal(mtrue

ν )−Signal(mtest
ν )

Noise

)2
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Improved mass scale determination!

We also checked the potential for measuring the neutrino mass scale

That is, comparing signal with different mν values,

−2 lnL =
(
Signal(mtrue

ν )−Signal(mtest
ν )

Noise

)2

What should the curve look like in this case?
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We also checked the potential for measuring the neutrino mass scale

mtrue
ν

mtest
ν

m
tru

e

ν

= m
tes

t

ν

fixed mtrue
ν represents nature choice

} = σmνstatistical uncertainty...
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Improved mass scale determination!

We also checked the potential for measuring the neutrino mass scale
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fixed mtrue
ν represents nature choice

} = σmν

Smallest mass with minimum bound

Minimum upper bound

i.e. Signal large enough compared to bkg
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Synergy improves potential measurement!
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Final remarks

1) Measuring neutrino mass is a hard task
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Final remarks

1) Measuring neutrino mass is a hard task

2) Cosmology is probably our best bet

3) Synergy between usual (
∑

mν) and Gravitational focusing (
∑

m4
ν) improves sensitivity

4) Almost 3σ for IO guaranteed

5) Lower bound on mass scale for mlightest
ν > 24meV for NO

@BW 2024-03-11 Pedro Pasquini 16 / 17



Thanks a lot!

Any questions?
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