Berkeley Week 2024

11 March 2024

Neutrino Mass Measurement with Cosmic Gravitational Focusing (arXiv:2312.16972)

Collaboration with:

Prof. Shao-Feng Ge Tan Liang (pronouns: He/Him/His)

Neutrinos have mass!

@BW 2024-03-11

Neutrinos have mass!

Super-Kamiokande & SNO (2015)

@BW 2024-03-11

4

Super-Kamiokande & SNO (2015)

@BW 2024-03-11

Neutrinos have mass!

 $P_{ee} = 1 - \sin^2 2\theta \sin\left(\frac{\Delta m^2 L}{4E_\nu}\right)$

4

@BW 2024-03-11

Super-Kamiokande & SNO (2015)

$$P_{ee} = 1 - \sin^2 2\theta \sin\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

$$\Delta m^2 = m_{\nu_2}^2 - m_{\nu_1}^2$$

(Phys.Rev.Lett. 100 (2008))

4

@BW 2024-03-11

Super-Kamiokande & SNO (2015)

$$P_{ee} = 1 - \sin^2 2\theta \sin\left(\frac{\Delta m^2 L}{4E_\nu}\right)$$

$$\Delta m^2 = m_{\nu_2}^2 - m_{\nu_1}^2$$

Thus
$$m_{\nu_2} \neq m_{\nu}$$

From Kamland Result (Phys.Rev.Lett. 100 (2008))

We don't know the mass scale

What we know today: (See PDG)

@BW 2024-03-11

1) At leas 3 neutrinos

@BW 2024-03-11

1) At leas 3 neutrinos

2) $m_{\nu_1} \neq m_{\nu_2} \neq m_{\nu_3}$ (at least 2 are non-zero!)

- 1) At leas 3 neutrinos
- 2) $m_{\nu_1} \neq m_{\nu_2} \neq m_{\nu_3}$ (at least 2 are non-zero!)
- 3) $\Delta m^2_{21} \approx 7.45 \times 10^{-5} \, {\rm eV}^2$ and $|\Delta m^2_{31}| \approx 2.4 \times 10^{-3} \, {\rm eV}^2$

1) At leas 3 neutrinos

2) $m_{\nu_1} \neq m_{\nu_2} \neq m_{\nu_3}$ (at least 2 are non-zero!)

3) $\Delta m^2_{21} \approx 7.45 \times 10^{-5} \, {\rm eV}^2$ and $|\Delta m^2_{31}| \approx 2.4 \times 10^{-3} \, {\rm eV}^2$

4) $\sum m_{\nu} < 0.13 \, {\rm eV}$ at 95% C. L.

1) At leas 3 neutrinos

2) $m_{\nu_1} \neq m_{\nu_2} \neq m_{\nu_3}$ (at least 2 are non-zero!)

3) $\Delta m^2_{21} \approx 7.45 \times 10^{-5} \, {\rm eV}^2$ and $|\Delta m^2_{31}| \approx 2.4 \times 10^{-3} \, {\rm eV}^2$

4) $\sum m_{
u} < 0.13 \, {\rm eV}$ at 95% C. L.

We don't know:

@BW 2024-03-11

1) At leas 3 neutrinos

2) $m_{\nu_1} \neq m_{\nu_2} \neq m_{\nu_3}$ (at least 2 are non-zero!)

3) $\Delta m^2_{21} \approx 7.45 \times 10^{-5} \, {\rm eV}^2$ and $|\Delta m^2_{31}| \approx 2.4 \times 10^{-3} \, {\rm eV}^2$

4) $\sum m_{
u} < 0.13 \, {\rm eV}$ at 95% C. L.

We don't know:

 $m_{\nu_1} < m_{\nu_3}$ or $m_{\nu_3} < m_{\nu_1}$ and $m_{\text{lightest}} = ?$ @BW 2024-03-11 Pedro Pasquini

1) At leas 3 neutrinos

2) $m_{\nu_1} \neq m_{\nu_2} \neq m_{\nu_3}$ (at least 2 are non-zero!)

3) $\Delta m^2_{21} \approx 7.45 \times 10^{-5} \, {\rm eV}^2$ and $|\Delta m^2_{31}| \approx 2.4 \times 10^{-3} \, {\rm eV}^2$

Hard to measure ν mass!

Measuring m_{lightest} is really hard!

@BW 2024-03-11

Notice that it is at most $\sim 0.1 \,\mathrm{eV} = 10^{-7}$ times smaller than m_e (could be even 0)!

Notice that it is at most $\sim 0.1 \,\mathrm{eV} = 10^{-7}$ times smaller than m_e (could be even 0)!

- β -decay end-point: $m_{\nu} < 0.2 \,\mathrm{eV}$ (future exp!)

(KATRIN Collaboration, "Katrin design report")

Notice that it is at most $\sim 0.1 \,\mathrm{eV} = 10^{-7}$ times smaller than m_e (could be even 0)!

- β -decay end-point: $m_{
u} < 0.2 \, {
m eV}$ (future exp!)

(KATRIN Collaboration, "Katrin design report")

- $0\nu\beta\beta$: Only works if ν are Majorana and if it is not in the funnel region
- (M. J. Dolinsk et. al. , "ARNPS 69 (2019) 219-251")

Notice that it is at most $\sim 0.1 \,\mathrm{eV} = 10^{-7}$ times smaller than m_e (could be even 0)!

- β -decay end-point: $m_{\nu} < 0.2 \, {
m eV}$ (future exp!)

(KATRIN Collaboration, "Katrin design report")

- $0\nu\beta\beta$: Only works if ν are Majorana and if it is not in the funnel region
- (M. J. Dolinsk et. al. , "ARNPS 69 (2019) 219-251")
- Kinematics of $C\nu B$: Very hard to measure...

(J. Alvey et. al., "PRD 105 6 (2022) 063501")

Notice that it is at most $\sim 0.1 \,\mathrm{eV} = 10^{-7}$ times smaller than m_e (could be even 0)!

- β -decay end-point: $m_{\nu} < 0.2 \, {
m eV}$ (future exp!)

(KATRIN Collaboration, "Katrin design report")

- $0\nu\beta\beta$: Only works if ν are Majorana and if it is not in the funnel region
- (M. J. Dolinsk et. al. , "ARNPS 69 (2019) 219-251")
- Kinematics of $C\nu B$: Very hard to measure...

(J. Alvey et. al. , "PRD 105 6 (2022) 063501")

- RENP: New proposal, probably needs technological advances..

(M. Yoshimura , "PRD 75, 113007 (2007)")

Notice that it is at most $\sim 0.1 \,\mathrm{eV} = 10^{-7}$ times smaller than m_e (could be even 0)!

- β -decay end-point: $m_{\nu} < 0.2 \, {\rm eV}$ (future exp!)

(KATRIN Collaboration, "Katrin design report")

- $0\nu\beta\beta$: Only works if ν are Majorana and if it is not in the funnel region
- (M. J. Dolinsk et. al. , "ARNPS 69 (2019) 219-251")
- Kinematics of $C\nu B$: Very hard to measure...

(J. Alvey et. al. , "PRD 105 6 (2022) 063501")

- RENP: New proposal, probably needs technological advances..

(M. Yoshimura , "PRD 75, 113007 (2007)")

- Flight time delay of Supernovae ν : We need a supernova and $m_{\nu} < 1 \, \text{eV}...$

(J.-S. Lu et. al, "JCAP 05 (2015) 044")

@BW 2024-03-11

Cosmology: our best option

Cosmology is the most promising! (see PDG)

@BW 2024-03-11

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \ {
m MeV}$

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \ {\rm MeV}$

Today's neutrino temperature is: $T_{\nu} \sim 1.95 \, {\rm K} \sim 10^{-4} \, {\rm eV}$ (at least 2 ν 's are non-relativistic!)

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \ {\rm MeV}$

Today's neutrino temperature is: $T_{\nu} \sim 1.95 \,\text{K} \sim 10^{-4} \,\text{eV}$ (at least 2 ν 's are non-relativistic!)

Non-relativistc ν suppresses the Sachs–Wolfe effect of CMB

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \, {\rm MeV}$

Today's neutrino temperature is: $T_{\nu} \sim 1.95 \, \text{K} \sim 10^{-4} \, \text{eV}$ (at least 2 ν 's are non-relativistic!)

Non-relativistc ν suppresses the Sachs–Wolfe effect of CMB

Also, ν free-streaming length changes matter power-spectrum

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \ {
m MeV}$

Today's neutrino temperature is: $T_{\nu} \sim 1.95 \,\text{K} \sim 10^{-4} \,\text{eV}$ (at least 2 ν 's are non-relativistic!)

Non-relativistc ν suppresses the Sachs–Wolfe effect of CMB

Also, ν free-streaming length changes matter power-spectrum

Both are sensitive to $\rho_{\nu} \approx n_{\nu} \sum_{\nu} m_{\nu}$:

@BW 2024-03-11

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \, {
m MeV}$

Today's neutrino temperature is: $T_{\nu} \sim 1.95 \,\text{K} \sim 10^{-4} \,\text{eV}$ (at least 2 ν 's are non-relativistic!)

Non-relativistc ν suppresses the Sachs–Wolfe effect of CMB

Also, ν free-streaming length changes matter power-spectrum

Both are sensitive to $\rho_{\nu} \approx n_{\nu} \sum_{\nu} m_{\nu}$:

That is where our best bound comes from: Plank2018 (CMB) and DES: $\sum m_{\nu} < 0.13\,{\rm eV}$ at 95% C. L.

@BW 2024-03-11

Neutrinos decouple from the plasma at $T_\gamma \sim 1 \ {
m MeV}$

Today's neutrino temperature is: $T_{\nu} \sim 1.95 \,\text{K} \sim 10^{-4} \,\text{eV}$ (at least 2 ν 's are non-relativistic!)

Non-relativistc ν suppresses the Sachs–Wolfe effect of CMB

Also, ν free-streaming length changes matter power-spectrum Future: $\sum m_{\nu} < 0.03 \text{ eV}$ at 95% C. L. Both are sensitive to $\rho_{\nu} \approx n_{\nu} \sum_{\nu} m_{\nu}$: (L. Amendola et al. , LRR 21 no. 1, (2018) 2)

That is where our best bound comes from: Plank2018 (CMB) and DES: $\sum m_{\nu} < 0.13 \, {\rm eV}$ at 95% C. L.

@BW 2024-03-11

Our work shows the power of complementing traditional cosmological measurements with the unexplored process of gravitational focusing between ν and DM. (See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972) Our work shows the power of complementing traditional cosmological measurements with the unexplored process of gravitational focusing between ν and DM. (See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)

The key idea:

Our work shows the power of complementing traditional cosmological measurements with the unexplored process of gravitational focusing between ν and DM. (See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)

The key idea:

- u and DM have a non-zero relative background velocity $v_{
u c}$

Our work shows the power of complementing traditional cosmological measurements with the unexplored process of gravitational focusing between ν and DM. (See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)

The key idea:

- u and DM have a non-zero relative background velocity $v_{
 u c}$
- As DM accumulates in halos. The $v_{\nu c}$ distorts both δ_c and δ_{ν} .

Our work shows the power of complementing traditional cosmological measurements with the unexplored process of gravitational focusing between ν and DM.
 (See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)
 The key idea:

- u and DM have a non-zero relative background velocity $v_{
 u c}$
- As DM accumulates in halos. The $v_{\nu c}$ distorts both δ_c and δ_{ν} .
- Both δ_c and δ_{ν} guides galaxy distribution δ_q , which we can observe.

Our work shows the power of complementing traditional cosmological measurements with the unexplored process of gravitational focusing between ν and DM.
 (See: H.-M. Zhu et. al., PRL 113 (2014) 131301, C. Okoli et. al. MNRAS 468 no. 2, (2017) 2164–2175, and Pedro Pasquini et. al., arXiv:2312.16972)
 The key idea:

- u and DM have a non-zero relative background velocity $v_{
 u c}$
- As DM accumulates in halos. The $v_{\nu c}$ distorts both δ_c and δ_{ν} .
- Both δ_c and δ_{ν} guides galaxy distribution δ_q , which we can observe.
- In fact, $v_{\nu c}$ breaks (locally) the isotopy and generates a distinct δ_g signal. (Imaginary part of the galaxy power spectrum)

@BW 2024-03-11
Let's check an intuitive picture

Relic ν

@BW 2024-03-11

Let's check an intuitive picture

Relic ν

@BW 2024-03-11

Let's check an intuitive picture

@BW 2024-03-11

Let's check an intuitive picture

@BW 2024-03-11

Let's check an intuitive picture

@BW 2024-03-11

Let's check an intuitive picture

Straightforward Newton mechanics: $\Delta \phi - \pi \propto m_{\nu}^2$

@BW 2024-03-11

Let's check an intuitive picture

Straightforward Newton mechanics: $\Delta \phi - \pi \propto m_{\nu}^2$ $\Delta \boldsymbol{p} \sim (-1 - \cos \Delta \phi) \boldsymbol{p} \propto m_{\nu}^4 \boldsymbol{p}$

@BW 2024-03-11

Let's check an intuitive picture

 $\begin{array}{l} \text{Straightforward Newton mechanics: } \Delta\phi - \pi \propto m_{\nu}^{2} \\ \Delta \boldsymbol{p} \sim (-1 - \cos \Delta \phi) \boldsymbol{p} \propto m_{\nu}^{4} \boldsymbol{p} \quad \boxed{\propto m_{\nu}^{4} |||||} \end{array}$

@BW 2024-03-11

Let's check an intuitive picture

Straightforward Newton mechanics: $\Delta \phi - \pi \propto m_{\nu}^2$

Full calculation:
$$\Delta p \propto m_{\nu}^4 + \frac{\pi^2}{5} m_{\nu}^2 T_{\nu}^2 + \frac{14}{15} \pi^4 T_{\nu}^4$$
BW 2024-03-11Pedro Pasquini

Let's check an intuitive picture

@BW 2024-03-11

@BW 2024-03-11

@BW 2024-03-11

@BW 2024-03-11

A non-zero relative velocity appears in small scales due to the mass difference of ν and DM!

@BW 2024-03-11

Relative velocity is crucial

A non-zero relative velocity appears in small scales due to the mass difference of ν and DM!

@BW 2024-03-11

Relative velocity is crucial

 $v_{\nu c} \neq 0$ also confirmed by N-body simulations (D. Inma et. al. PRD 92 no. 2, (2015) 023502)

From: C. Okol et. al. MNRAS 468 no. 2, (2017) 2164-2175

70000 450 z = 0 $m_{
u_1}=$ 0.05 eV $M_{\odot} = 0.06 \text{ eV}$ 400 60000 $m_{\nu_1} = 0.1 \text{ eV}$ $M_{\nu} = 0.11 \text{ eV}$ $m_{\nu_1} = 0.2 \text{ eV}$ $M_{\nu} = 0.2 \text{ eV}$ 350 50000 $m_{
u_1} = 0.4 \text{ eV}$ $M_{\nu} = 0.4 \, \, {\rm eV}$ 300 $v_{\nu c}(R)[km/s]$ $\nabla^{[m]}_{\nabla^2_{\mathbb{R}}} [(\mathsf{km/s})]_{\mathbb{R}}^2$ 250 200 20000 100 10000 50 ٥L 10^{-2} 10^{-1} 10^{-3} 20 40 60 80 100 $R(h^{-1} \mathrm{Mpc})$ $k \, [h \, Mpc^{-1}]$

A non-zero relative velocity is needed

A non-zero relative velocity appears in small scales due to the mass difference of ν and DM!

@BW 2024-03-11

 $v_{\mu\alpha}$ power-spectrum (Classy package):

So, how to observe the effect?

@BW 2024-03-11

Non-zero $\text{Im}[\delta_g]!$

So, how to observe the effect?

1) Local isotropy is broken \Rightarrow dipole term:

$$\delta(\boldsymbol{r}) \approx \delta^{(0)}(|\boldsymbol{r}|) + (\boldsymbol{v}_{\nu c} \cdot \boldsymbol{r})\delta^{(1)}(|\boldsymbol{r}|) \to \operatorname{Im}[\tilde{\delta}] \neq 0$$

Non-zero $\text{Im}[\delta_g]!$

So, how to observe the effect?

1) Local isotropy is broken \Rightarrow dipole term:

 $\delta(\boldsymbol{r}) \approx \delta^{(0)}(|\boldsymbol{r}|) + (\boldsymbol{v}_{\nu c} \cdot \boldsymbol{r})\delta^{(1)}(|\boldsymbol{r}|) \to \operatorname{Im}[\tilde{\delta}] \neq 0$

2) Galaxy distribution follows ν and DM:

$$\tilde{\delta}_g = b_c F_c \tilde{\delta}_c + b_\nu F_\nu \tilde{\delta}_\nu \qquad (F_a \equiv \rho_a / (\rho_c + \rho_\nu))$$

@BW 2024-03-11

So, how to observe the effect?

1) Local isotropy is broken \Rightarrow dipole term:

 $\delta(\boldsymbol{r}) \approx \delta^{(0)}(|\boldsymbol{r}|) + (\boldsymbol{v}_{\nu c} \cdot \boldsymbol{r})\delta^{(1)}(|\boldsymbol{r}|) \to \operatorname{Im}[\tilde{\delta}] \neq 0$

2) Galaxy distribution follows ν and DM:

$$\tilde{\delta}_g = b_c F_c \tilde{\delta}_c + b_\nu F_\nu \tilde{\delta}_\nu \qquad (F_a \equiv \rho_a / (\rho_c + \rho_\nu))$$

3) We observe galaxy cross-correlation's imaginary part:

$$\operatorname{Im}\left[\langle \widetilde{\delta}_{g\alpha,\mathrm{RSD}} \widetilde{\delta}_{g\beta,\mathrm{RSD}}^* \rangle\right] \neq 0$$

@BW 2024-03-11

So, how to observe the effect?

1) Local isotropy is broken \Rightarrow dipole term:

 $\delta(\boldsymbol{r}) \approx \delta^{(0)}(|\boldsymbol{r}|) + (\boldsymbol{v}_{\nu c} \cdot \boldsymbol{r})\delta^{(1)}(|\boldsymbol{r}|) \to \operatorname{Im}[\tilde{\delta}] \neq 0$

2) Galaxy distribution follows ν and DM:

$$\tilde{\delta}_g = b_c F_c \tilde{\delta}_c + b_\nu F_\nu \tilde{\delta}_\nu \qquad (F_a \equiv \rho_a / (\rho_c + \rho_\nu))$$

3) We observe galaxy cross-correlation's imaginary part:

$$\operatorname{Im}\left[\langle \widetilde{\delta}_{g\boldsymbol{\alpha},\mathrm{RSD}} \widetilde{\delta}_{g\boldsymbol{\beta},\mathrm{RSD}}^* \rangle\right] \neq 0$$

@BW 2024-03-11

We need two galaxy populations!

We actually need $\alpha \neq \beta$:

@BW 2024-03-11

We need two galaxy populations!

We actually need $\alpha \neq \beta$:

$$\begin{split} \operatorname{Im}\left[\widetilde{\delta}_{g\alpha,\mathrm{RSD}}\widetilde{\delta}_{g\beta,\mathrm{RSD}}^{*}\right] &= -(b_{c}^{\alpha}b_{\nu}^{\beta} - b_{\nu}^{\alpha}b_{c}^{\beta})\widetilde{\delta}_{m0}^{2}\widetilde{\phi} - (b_{c}^{\alpha} - b_{c}^{\beta})\frac{\mu_{k}^{2}}{H}\widetilde{\delta}_{m0}(\dot{\widetilde{\delta}}_{m0}\widetilde{\phi} + \widetilde{\delta}_{m0}\dot{\widetilde{\phi}}) \\ &+ (b_{\nu}^{\alpha} - b_{\nu}^{\beta})\frac{\mu_{k}^{2}}{H}\dot{\widetilde{\delta}}_{m0}\widetilde{\delta}_{m0}\widetilde{\phi} \\ & \text{with } \widetilde{\phi} \equiv \operatorname{Im}\left[\frac{\widetilde{\delta}_{m}}{\widetilde{\delta}_{m0}}\right] \propto |\boldsymbol{v}_{\nu c}|m_{\nu}^{4} \end{split}$$

We need two galaxy populations!

We actually need $\alpha \neq \beta$:

$$\begin{split} \operatorname{Im}\left[\widetilde{\delta}_{g\alpha,\mathrm{RSD}}\widetilde{\delta}_{g\beta,\mathrm{RSD}}^{*}\right] &= -(b_{c}^{\alpha}b_{\nu}^{\beta} - b_{\nu}^{\alpha}b_{c}^{\beta})\widetilde{\delta}_{m0}^{2}\widetilde{\phi} - (b_{c}^{\alpha} - b_{c}^{\beta})\frac{\mu_{k}^{2}}{H}\widetilde{\delta}_{m0}(\dot{\widetilde{\delta}}_{m0}\widetilde{\phi} + \widetilde{\delta}_{m0}\dot{\widetilde{\phi}}) \\ &+ (b_{\nu}^{\alpha} - b_{\nu}^{\beta})\frac{\mu_{k}^{2}}{H}\dot{\widetilde{\delta}}_{m0}\widetilde{\delta}_{m0}\widetilde{\phi} \\ & \text{with } \widetilde{\phi} \equiv \operatorname{Im}\left[\frac{\widetilde{\delta}_{m}}{\widetilde{\delta}_{m0}}\right] \propto |\boldsymbol{v}_{\nu c}|m_{\nu}^{4} \end{split}$$

Also, for $\Delta b \equiv b^{\alpha} - b^{\beta}$ larger, larger signal.

We actually need $\alpha \neq \beta$:

$$\begin{split} \operatorname{Im}\left[\widetilde{\delta}_{g\alpha,\mathrm{RSD}}\widetilde{\delta}_{g\beta,\mathrm{RSD}}^{*}\right] &= -(b_{c}^{\alpha}b_{\nu}^{\beta} - b_{\nu}^{\alpha}b_{c}^{\beta})\widetilde{\delta}_{m0}^{2}\widetilde{\phi} - (b_{c}^{\alpha} - b_{c}^{\beta})\frac{\mu_{k}^{2}}{H}\widetilde{\delta}_{m0}(\dot{\widetilde{\delta}}_{m0}\widetilde{\phi} + \widetilde{\delta}_{m0}\dot{\widetilde{\phi}}) \\ &+ (b_{\nu}^{\alpha} - b_{\nu}^{\beta})\frac{\mu_{k}^{2}}{H}\widetilde{\delta}_{m0}\widetilde{\delta}_{m0}\widetilde{\phi} \\ & \text{with } \widetilde{\phi} \equiv \operatorname{Im}\left[\frac{\widetilde{\delta}_{m}}{\widetilde{\delta}_{m0}}\right] \propto |\boldsymbol{v}_{\nu c}|m_{\nu}^{4}$$

Also, for $\Delta b \equiv b^{lpha} - b^{eta}$ larger, larger signal.

We optimized/illustrate the analysis for the DESI survey.

@BW 2024-03-11

@BW 2024-03-11

Ground-based telescope: \sim 40 million galaxies/quasars & 14,000 square degree of the sky

Photo from desi.lbl.gov

@BW 2024-03-11

Ground-based telescope: \sim 40 million galaxies/quasars & 14,000 square degree of the sky

Photo from desi.lbl.gov

- 10 million bright galaxies sample (z < 0.6)

@BW 2024-03-11

Ground-based telescope: \sim 40 million galaxies/quasars & 14,000 square degree of the sky

- 10 million bright galaxies sample (z < 0.6)

- 30 million faint galaxies samples (0.6 < z < 1.6)

@BW 2024-03-11

Ground-based telescope: \sim 40 million galaxies/quasars & 14,000 square degree of the sky

Photo from desi.lbl.gov

- 10 million bright galaxies sample (z < 0.6)

- 30 million faint galaxies samples (0.6 < z < 1.6)

(i) Luminous red galaxies (LRG)(ii) Emission line galaxies (ELG)(iii) Quasi-stellar objects (QSO)

@BW 2024-03-11

Ground-based telescope: \sim 40 million galaxies/quasars & 14,000 square degree of the sky

Photo from desi.lbl.gov

- 10 million bright galaxies sample (z < 0.6)

- 30 million faint galaxies samples (0.6 < z < 1.6)

(i) Luminous red galaxies (LRG)(ii) Emission line galaxies (ELG)(iii) Quasi-stellar objects (QSO)

Natural separation and $\neq b_c!$

@BW 2024-03-11

Optimizing by mass spliting

It would be nice to use the BGS

@BW 2024-03-11

It would be nice to use the BGS

But we need two galaxy samples (at same z) with \neq bias...

It would be nice to use the BGS

But we need two galaxy samples (at same z) with \neq bias...

We use the idea by D. Ginzburg and V. Desjacques, MNRAS 495, 1,932-942 (2020):

Separate galaxies by their host halo mass

It would be nice to use the BGS

But we need two galaxy samples (at same z) with \neq bias...

We use the idea by D. Ginzburg and V. Desjacques, MNRAS 495, 1,932-942 (2020):

Separate galaxies by their host halo mass

Halo mass can be inferred: X. Yang et al. AJ 909 no. 2, (2021) 143

 $\Delta \log_{10} M_h / M_{\odot} h^{-1} \sim 0.4$

@BW 2024-03-11
We have to find a balance to optimize the signal-to-noise-ratio

We have to find a balance to optimize the signal-to-noise-ratio

We have to find a balance to optimize the signal-to-noise-ratio

@BW 2024-03-11

Almost 3σ for IO guaranteed!

Dotted line: $\sum m_{\nu} < 0.13 \,\mathrm{eV}$ 95% C.L. signal-like

@BW 2024-03-11

That is, comparing signal with different $m_{
u}$ values,

$$-2\ln L = \left(\frac{\text{Signal}(m_{\nu}^{\text{true}}) - \text{Signal}(m_{\nu}^{\text{test}})}{\text{Noise}}\right)^2$$

That is, comparing signal with different m_{ν} values,

$$-2\ln L = \left(\frac{\text{Signal}(m_{\nu}^{\text{true}}) - \text{Signal}(m_{\nu}^{\text{test}})}{\text{Noise}}\right)^2$$

What should the curve look like in this case?

@BW 2024-03-11

@BW 2024-03-11

@BW 2024-03-11

@BW 2024-03-11

@BW 2024-03-11

Improved mass scale determination!

We also checked the potential for measuring the neutrino mass scale

@BW 2024-03-11

@BW 2024-03-11

Synergy improves potential measurement!

@BW 2024-03-11

1) Measuring neutrino mass is a hard task

@BW 2024-03-11

- 1) Measuring neutrino mass is a hard task
- 2) Cosmology is probably our best bet

1) Measuring neutrino mass is a hard task

2) Cosmology is probably our best bet

3) Synergy between usual $(\sum m_{\nu})$ and Gravitational focusing $(\sum m_{\nu}^4)$ improves sensitivity

- 1) Measuring neutrino mass is a hard task
- 2) Cosmology is probably our best bet

3) Synergy between usual $(\sum m_{\nu})$ and Gravitational focusing $(\sum m_{\nu}^4)$ improves sensitivity

4) Almost 3σ for IO guaranteed

1) Measuring neutrino mass is a hard task

2) Cosmology is probably our best bet

3) Synergy between usual $(\sum m_{\nu})$ and Gravitational focusing $(\sum m_{\nu}^4)$ improves sensitivity

4) Almost 3σ for IO guaranteed

5) Lower bound on mass scale for $m_{
u}^{
m lightest}>24\,{
m meV}$ for NO

@BW 2024-03-11

Any questions?

Founding Support:

Double First Class start-up fund (WF220442604), the Shanghai Pujiang Program (20PJ1407800), National Natural Science Foundation of China (No. 12090064), and Chinese Academy of Sciences Center for Excellence in Particle Physics (CCEPP). and the Grant-in-Aid for Innovative Areas No. 19H05810

@BW 2024-03-11