Deciphering the Mysteries of the Long-Lived Particles: Perspectives from LHC, FCC-hh and Muon Collider

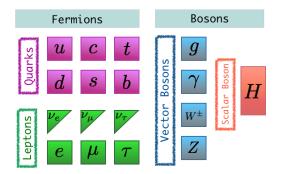
CHANDRIMA SEN

PhD Student

Indian Institute of Technology Hyderabad

March 11, 2024

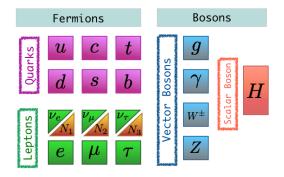
Collaborators: P. Bandyopadhyay (IITH), E. J. Chun (Korea Institute for Advance Study), M. Frank (Concordia University), S. Parashar (IITH), J.H. Song (Konkuk University)



Overviews

- Introduction
- Displaced vertex signatures
- Boosted displaced decay in Type-I seesaw model
- Successive displaced decay in Type-III seesaw model
- Displaced multi-lepton signatures
- Disappearing charge tracks at muon collider
- Conclusions

Some puzzles for physics beyond the Standard Model


- Can not explain the tiny neutrino mass, which is evident from the neutrino oscillation data.
- Can not explain dark energy and dark matter, which contains 95% of our universe.
- Can not explain the matter-antimatter asymmetry in the present universe.

Extend with the Right-handed Components of Neutrinos

- Since neutrinos are electrically neutral, they can be Majorana in nature.
- Seesaw mechanism is one where the smallness of neutrino mass is explained by a large scale.
- The mass term can be written as

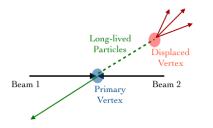
$$\mathcal{L} \supset \frac{1}{2} M_L \overline{(\psi_L)^c} \psi_L + \frac{1}{2} M_R \overline{(\psi_R)^c} \psi_R + \text{h.c.}$$

• The light neutrino has the basic structure as:

$$m_{\nu} \approx \frac{(\text{Yukawa coupling})^2 \times \langle \phi \rangle^2}{M_{\text{Seesaw}}}$$

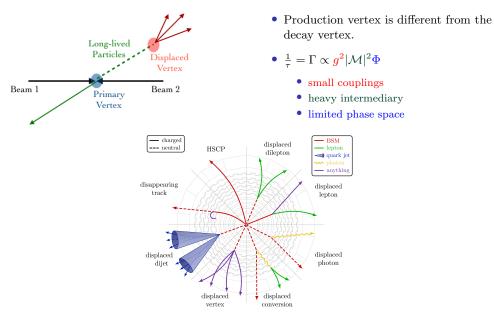
 $\approx \frac{\text{MeV}^2}{\text{TeV}} \approx \text{eV}$

• The discovery of the right-handed components of neutrinos is essential to justify the neutrino oscillation data.

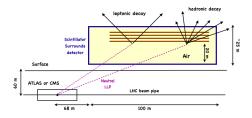

- The discovery of the right-handed components of neutrinos is essential to justify the neutrino oscillation data.
- However, since the discovery of the Higgs boson in 2012, there have been no new physics discoveries at the LHC or any other collider experiments.

- The discovery of the right-handed components of neutrinos is essential to justify the neutrino oscillation data.
- However, since the discovery of the Higgs boson in 2012, there have been no new physics discoveries at the LHC or any other collider experiments.
- Is the scale of new physics so high that it is beyond our current reach?

- The discovery of the right-handed components of neutrinos is essential to justify the neutrino oscillation data.
- However, since the discovery of the Higgs boson in 2012, there have been no new physics discoveries at the LHC or any other collider experiments.
- Is the scale of new physics so high that it is beyond our current reach?
- Do we need a very high-energy collider, such as the FCC-hh, despite the funding problems?

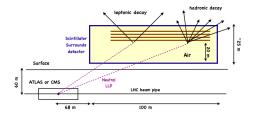

- The discovery of the right-handed components of neutrinos is essential to justify the neutrino oscillation data.
- However, since the discovery of the Higgs boson in 2012, there have been no new physics discoveries at the LHC or any other collider experiments.
- Is the scale of new physics so high that it is beyond our current reach?
- Do we need a very high-energy collider, such as the FCC-hh, despite the funding problems?
- What if we already have some signatures, but we are missing them, such as those from long-lived particles?

Can we get Long Lived Particle (LLP) Signature?

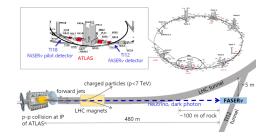

- Production vertex is different from the decay vertex.
- $\frac{1}{ au} = \Gamma \propto g^2 |\mathcal{M}|^2 \Phi$
 - small couplings
 - heavy intermediary
 - limited phase space

Can we get Long Lived Particle (LLP) Signature?

picture courtesy: https://tikz.net/bsm-longlived


Some Proposed LLP Detectors

- MATHUSLA is proposed to be built 68 meters from the CMS interaction point in the longitudinal direction, 60 meters in the transverse direction.
- MATHUSLA should be able to search for the long-lived particles with near-zero backgrounds.
- MATHUSLA geometry: $25 \times 100 \times 100 \text{ m}^3$.


Alpigiani et al. [arXiv:2009.01693 [physics.ins-det]]

Some Proposed LLP Detectors

- MATHUSLA is proposed to be built 68 meters from the CMS interaction point in the longitudinal direction, 60 meters in the transverse direction.
- MATHUSLA should be able to search for the long-lived particles with near-zero backgrounds.
- MATHUSLA geometry: $25 \times 100 \times 100 \text{ m}^3$.

Alpigiani et al. [arXiv:2009.01693 [physics.ins-det]]

- FASER-II is proposed to be situated 480 m east of ATLAS collision point.
- Detector length $\sim 5 \,\mathrm{m}$, radius $\sim 1 \,\mathrm{m}$.
- Projected luminosity 3 ab^{-1} .
- Angular acceptance, $\theta \leq 0.0573^{\circ}$.

FASER Collaboration [arXiv:1901.04468 [hep-ex]]

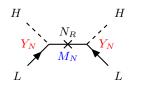
Example 1: Type-I Seesaw Model

Example 1: Type-I Seesaw Model

Why displaced signature?

• Small Yukawa couplings.

Example 1: Type-I Seesaw Model


Why displaced signature?

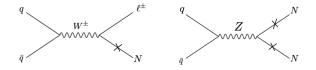
• Small Yukawa couplings.

What kind of signatures?

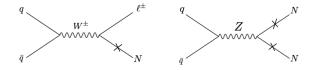
• Displaced leptons and jets.

Type-I Seesaw Model

- This is the singlet fermionic extension to the Standard Model.
- The lagrangian corresponding to the singlet fermion is:


$$\mathcal{L}_{N_R} = \underbrace{i\bar{N_R}\partial N_R}_{\text{kinetic term}} - \underbrace{\frac{1}{2}\bar{N_R}M_NN_R^c}_{\text{Majorana mass term}} - \underbrace{Y_N\bar{L}\tilde{\phi}N_R}_{\text{Yukawa interactions}} + h.c$$

Considering Dirac mass as well as Majorana mass,


$$\mathcal{L}_{m_{\nu}} = -(Y_N v) \bar{N_R} \nu_L - \frac{1}{2} M_N \bar{N_R}^c N_R + h.c.$$
$$\mathcal{L}_{m_{\nu}} = \frac{1}{2} \begin{pmatrix} \bar{\nu_L} & \bar{N_R} \end{pmatrix} \underbrace{\begin{pmatrix} 0 & (Y_N v) \\ (Y_N v) & M_N \end{pmatrix}}_{\text{Mass matrix}} \begin{pmatrix} \nu_L \\ N_R^c \end{pmatrix} + h.c.$$

After diagonalisation $D_{\nu} = \begin{pmatrix} m_1 & 0\\ 0 & m_2 \end{pmatrix}$, where, $m_{1,2} = \left| \frac{1}{2} \left(M_N \mp \sqrt{M_N^2 + 4(Y_N v)^2} \right) \right|$ $\implies m_1 = \frac{Y_N^2 v^2}{M_N}$ and, $m_2 = M_N$

- Production cross-section of singlet right-handed neutrino at the collider is very small due to mixing.
- Pair production is even more difficult.

- Production cross-section of singlet right-handed neutrino at the collider is very small due to mixing.
- Pair production is even more difficult.

Solution!!

Extend the Standard Model gauge group with a $U(1)_{B-L}$ symmetry. The right-handed neutrinos are charged under this gauge group.

Type-I Seesaw model with B - L gauge symmetry

Apart from the SM particles we consider,

- three RHNs (N_{R_i}) to cancel the B L gauge anomaly,
- one $U(1)_{B-L}$ gauge boson Z_{BL} ,
- one SM singlet B L charged complex scalar χ ,

B-L charge for all the particles in the model:

	Φ	Q	L	u_R, d_R	e_R	N_{R_i}	χ
B-L	0	1/3	-1	1/3	1	-1	2

Important Terms in Lagrangian

The covariant derivative form:

$$D_{\mu} = \partial_{\mu} + ig_2 T^a W^a_{\mu} + ig_1 Y B_{\mu} + ig_{BL} Y_{B-L} B'_{\mu}$$

The scalar potential:

$$V(\Phi,\chi) = m_{\Phi}^2(\Phi^{\dagger}\Phi) + m_{\chi}^2|\chi|^2 + \lambda_1(\Phi^{\dagger}\Phi)^2 + \lambda_2|\chi|^4 + \lambda_3(\Phi^{\dagger}\Phi)|\chi|^2.$$

The Yukawa terms of the Lagrangian:

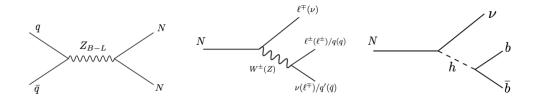
$$\mathcal{L}_{Y} = -Y_{ij}^{u} \overline{Q}_{i} \,\tilde{\Phi}(u_{R})_{j} - Y_{ij}^{d} \overline{Q}_{i} \,\Phi(d_{R})_{j} - Y_{ij}^{e} \overline{L}_{i} \,\Phi(e_{R})_{j} - \underbrace{(Y_{N})_{ij} \,\overline{L}_{i} \,\tilde{\Phi}(N_{R})_{j}}_{\text{Dirac mass term}} - \underbrace{(\lambda_{N})_{ij} \,\chi(\overline{N_{R}})_{i}^{C} \,(N_{R})_{j}}_{\text{Maiorana mass term}}.$$

Basso et al. [Phys.Rev.D 80 (2009) 055030]

Mass Generations After Spontaneous Symmetry Breaking

• Mass of the Z_{B-L} is generated due to spontaneous symmetry breaking of the B-L gauge symmetry:

$$M_{Z_{B-L}} = 2g_{BL}v_{BL},$$
 where, $\langle \chi \rangle = \frac{v_{BL}}{\sqrt{2}}$

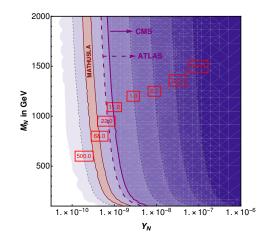

• Majorana masses of RHNs also come from here:

$$M_N = \lambda_N \frac{v_{BL}}{\sqrt{2}}$$

• Light SM neutrino masses are generated by Type-I seesaw mechanism when Φ gets vev:

$$m_{
u} = rac{Y_N^2 v^2}{2M_N}, \qquad ext{where, } <\Phi>=rac{v}{\sqrt{2}}$$

Production and Decay Modes of RHNs


- The RHNs can be pair produced via Z_{B-L} .
- RHNs decay through $Z\nu$, $h\nu$ and $W^{\pm}\ell^{\mp}$, with the decay widths,

$$\Gamma_N^{Z\nu} \cong \Gamma_N^{h\nu} \cong \frac{1}{2} \Gamma_N^{W\ell} \cong \frac{Y_N^2 M_N}{64\pi}$$

• The ratio of W^{\pm} , Z and h mode is 2:1:1 for $M_N \gtrsim 400 \text{ GeV}$.

Strumia et al. [Phys.Rev.D78:(2008)]

Rest Mass Decay Lengths

- Rest mass decay length ($c\tau_0$ in meter) contours in the M_N versus Y_N plane.
- For $M_N \sim 1$ TeV, Y_N need to be 5×10^{-10} to reach in MATHUSLA.

Priyotosh Bandyopadhyay, Eung Jin Chun, CS [JHEP 02 (2023) 103]

Boosted Displaced Decays

• Boost effect can enhance the decay length as,

$$L_{\tau} = c\tau\beta\gamma$$
$$= \frac{\tau p}{m}$$

• Decay vertex position with the boost effect:

$$v' = v + \frac{\tau p}{m}$$

- τ gives the distribution, boost effect comes from $\frac{p}{m}$.
- The transverse decay length: $L_{\perp} = \frac{\tau p_T}{m}$.
- The longitudinal decay length: $L_{||} = \frac{\tau p_z}{m}$.

Two Scenarios for Collider Study

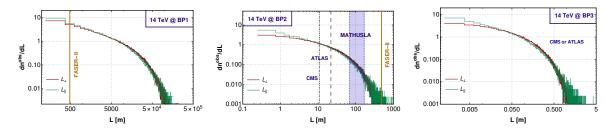
Scenario-1

- Three degenerate right-handed neutrinos, where all of them has same mass M_N .
- Considering the Casas-Ibarra parametrization, we can reconstruct their Yukawa matrix given the active neutrino mass matrix compatible with the neutrino oscillation data.

Scenario-1

- Three degenerate right-handed neutrinos, where all of them has same mass M_N .
- Considering the Casas-Ibarra parametrization, we can reconstruct their Yukawa matrix given the active neutrino mass matrix compatible with the neutrino oscillation data.

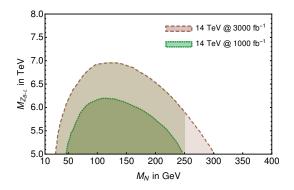
	BP1	BP2	BP3
M_N	$10{ m GeV}$	$60{ m GeV}$	$100{ m GeV}$
Y_N	8.1×10^{-8}	1.98×10^{-7}	2.56×10^{-7}
$c\tau_0$	$193.00\mathrm{m}$	$3.96\mathrm{m}$	$0.02\mathrm{m}$


Scenario-2

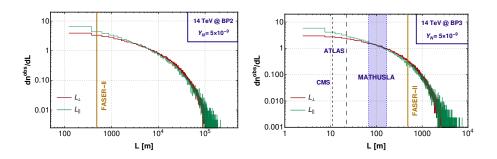
• According to neutrino oscillation data, mass square difference for normal ordering is,

 $\Delta m_{21}^2 = m_2^2 - m_1^2 \approx 7.42 \times 10^{-5} \, \mathrm{eV}^2 \qquad \text{and} \qquad \Delta m_{31}^2 = m_3^2 - m_1^2 \approx 2.51 \times 10^{-3} \, \mathrm{eV}^2.$

- One of the right-handed neutrinos decouples from the observed neutrino mass generations, with the possibility of much smaller Yukawa coupling.
- The other two right-handed neutrinos can explain light neutrino masses.
- Yukawa couplings can be treated as a free parameter.

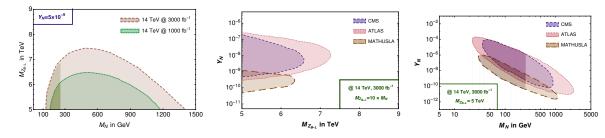

Displaced Decays: Scenario-1

• For $M_N = 10 \text{ GeV}$ and $Y_N \sim 8.1 \times 10^{-8}$, most of the events fall outside the reach of CMS, ATLAS or MATHUSLA detectors.


- For $M_N = 60 \,\text{GeV}$ and $Y_N \sim 1.98 \times 10^{-7}$, there can be adequate number of events in each of the three detectors.
- For $M_N = 100 \text{ GeV}$ and $Y_N \sim 2.56 \times 10^{-7}$, the maximum displacement is around 4 meter, hence, all of the events are inside CMS or ATLAS.

Parameter Region: $M_{Z_{B-L}}$ versus M_N plane

- The regions are obtained from the most dominant final states: $2\ell + 2j$ (dark shaded region), $2\ell + 4j$ (light shaded region).
- We only consider the events that are displaced and can be detected in either of the detectors CMS, ATLAS and MATHUSLA.
- Reach is ~ 300 GeV in M_N plane and ~ 6.8 TeV in $M_{Z_{B-L}}$ plane for 14 TeV collider with 3000 fb⁻¹ luminosity.


Displaced Decays: Scenario-2

• Choice of Yukawa coupling is a free parameter, we consider $Y_N = 5 \times 10^{-9}$.

- For $M_N = 60 \text{ GeV}$, the events are outside the reach of any of the three detectors.
- We can get the events inside MATHUSLA for $M_N = 100 \text{ GeV}$.

Parameter Regions

- Reach is ~ 1.35 TeV in M_N plane and ~ 7.5 TeV in $M_{Z_{B-L}}$ plane for 14 TeV collider with 3000 fb⁻¹ luminosity \implies Choice of the small Yukawa couplings increases the parameter space compared to scenario-1.
- MATHUSLA is sensitive for lower Yukawa couplings.
- The maximum Yukawa coupling of $\mathcal{O}(10^{-4})$ can be probed in this case for 14 TeV collider with $M_N \sim 25 \text{ GeV}$ via displaced vertex.

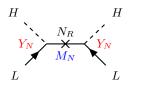
Example 2: Type-III Seesaw Model

Example 2: Type-III Seesaw Model

Why displaced signature?

- Small Yukawa couplings.
- Compressed mass spectrum between the charged and neutral component.

Example 2: Type-III Seesaw Model


Why displaced signature?

- Small Yukawa couplings.
- Compressed mass spectrum between the charged and neutral component.

What kind of signatures?

- Disappearing charged tracks.
- Displaced leptons and jets.

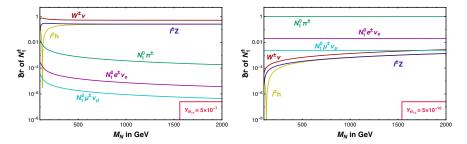
Type-III Seesaw Model

• The SU(2) triplet fermion (N_R) with zero hypercharge is added with the Standard Model.

• N_R has one pair of charged fermion (N^{\pm}) and one neutral component (N^0) ,

(N^0)	$\sqrt{2}N^+$		N^+	N^{-}	N^0
$N_R = \begin{pmatrix} N^0\\\sqrt{2}N^- \end{pmatrix}$	$\left(\begin{array}{c} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{array} \right)$	 T_3	+1	-1	0
$\sqrt{\sqrt{2}N}$	-10)	Y	0	0	0

• The Lagrangian corresponding to the triplet fermion is:

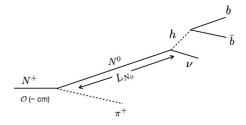

$$\mathcal{L}_{N_{R}} = \operatorname{Tr}(\overline{N_{R}} \mathscr{D} N_{R}) - \frac{1}{4} M_{N} \operatorname{Tr}\left[\overline{N_{R}} N_{R}\right] - Y_{N} \left(\tilde{\phi}^{\dagger} \overline{N_{R}} L + \overline{L} N_{R} \tilde{\phi}\right).$$

• The neutral component (N^0) behaves like a majorana fermion and generates the small neutrino mass.

Branching Ratio depending on Yukawa Couplings

• Heavy charged fermion (N^{\pm}) decays to $Z\ell^{\pm}$, $h\ell^{\pm}$ and $W^{\pm}\nu$, with the decay widths,

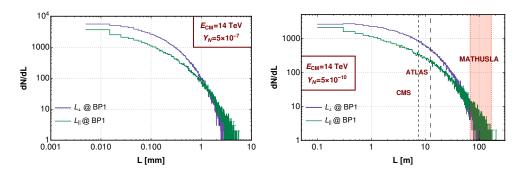
$$\Gamma_{N^{\pm}}^{Z\ell} \cong \Gamma_{N^{\pm}}^{h\ell} \cong \frac{1}{2} \Gamma_{N^{\pm}}^{W\nu} \cong \frac{Y_N^2 M_N}{32\pi}$$


• Another decay mode possible considering the loop generated mass of N^{\pm} and N^{0} ,

$$\Gamma(N^{\pm} \to N^0 \pi^{\pm}) = \frac{2G_F^2 V_{ud}^2 \Delta M^3 f_{\pi}^2}{\pi} \sqrt{1 - \frac{m_{\pi}^2}{\Delta M^2}},$$

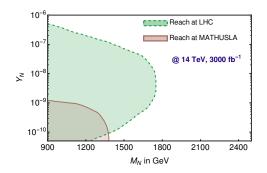
• This branching ratio is very small (< 1%) for $Y_N \sim 5 \times 10^{-7}$.

• For $M_N \sim 1 \text{ TeV}$ and $Y_N \sim 5 \times 10^{-10}$, $Br(N^{\pm} \rightarrow N^0 \pi^{\pm})$ is 97.5%.


Successive Displaced Decays

- Lower Yukawa couplings, i.e. $Y_N \lesssim 5 \times 10^{-8}$, the decay mode of $N^{\pm} \to \pi^{\pm} N^0$ dominates.
- First recoil: Decay length of N^{\pm} is $\mathcal{O}(5)$ cm.
- Second recoil: Decay length of N^0 depends on Y_N .

Priyotosh Bandyopadhyay, Saunak Dutta, Aleesha K T, CS [Eur.Phys.J.C 82 (2022) 3, 230]


Displaced Decay @14 TeV collider

• $M_N = 1 \text{ TeV} (BP1).$

- Lower the Yukawa couplings, longer the decay lengths.
- For larger Yukawa couplings, $Y_N \sim 5 \times 10^{-7}$, decay is within CMS/ ATLAS.
- Decay products can reach to MATHUSLA for $Y_N \sim 5 \times 10^{-10}$, even in 14 TeV collider.

Parameter Regions for LHC

- The regions are in Y_N versus M_N plane, that can be probed at LHC
- The regions contain at least one displaced Higgs boson reconstructed from di-b-jet invariant mass.
- Yukawa couplings $\gtrsim 10^{-9}$ is out of the reach of MATHUSLA.

Example 3: Inert Higgs Doublet Model (IDM) + SU(2) Triplet, Z_2 odd Vector Like Lepton (VLL)

Example 3: Inert Higgs Doublet Model (IDM) + SU(2) Triplet, Z_2 odd Vector Like Lepton (VLL)

Why displaced signature?

- Compressed mass spectrum between the Z_2 odd scalar and fermionic sector.
- Small Yukawa coupling between these two sectors.

Example 3: Inert Higgs Doublet Model (IDM) + SU(2) Triplet, Z_2 odd Vector Like Lepton (VLL)

Why displaced signature?

- Compressed mass spectrum between the Z_2 odd scalar and fermionic sector.
- Small Yukawa coupling between these two sectors.

What kind of signatures?

• Displaced multi-lepton final states.

The Model

• We extend the SM with an $SU(2)_L$ scalar doublet Φ_2 , and an vector-like SU(2) triplet fermion N with Y = 1, both are odd under Z_2 symmetry.

Description	Field definition	Gauge charges				
		$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	Z_2	
Vectorlike lepton (VLL)	$N = \begin{pmatrix} \frac{N^{-}}{\sqrt{2}} & N^{0} \\ N^{} & -\frac{N^{-}}{\sqrt{2}} \end{pmatrix}$	1	3	-1	_	
Scalars	$\Phi_1 = (\phi_1^+ \ \phi_1^0)^T$	1	2	1/2	+	
	$\Phi_2 = (\phi_2^+ \ \phi_2^0)^T$	1	2	1/2	_	

• Scalar potential:

$$\begin{split} V_{\text{scalar}} &= -m_{\Phi_1}^2 \Phi_1^{\dagger} \Phi_1 - m_{\Phi_2}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c \right] \end{split}$$

• \mathbb{Z}_2 odd scalar doublet couples with VLL as

$$\mathcal{L}_{VLL} \supset \left[-\frac{M_N}{2} \overline{N_L} N_R + \mathcal{Y}_N \overline{L_L^e} N_R \Phi_2 \right] + h.c.$$

Physical masses of the particles

- Φ_2 does not get vev being an Z_2 odd particle.
- The physical scalar masses after electroweak symmetry breaking are:

$$\begin{split} M_h^2 &= 2\lambda_1 v^2 \\ M_{H^0/A^0}^2 &= m_{\Phi_2}^2 + \frac{1}{2} v^2 \lambda_{L/S} \\ M_{H^\pm}^2 &= m_{\Phi_2}^2 + \frac{1}{2} v^2 \lambda_3, \end{split}$$

where, $\lambda_{L/S} = \lambda_3 + \lambda_4 \pm 2\lambda_5$.

Physical masses of the particles

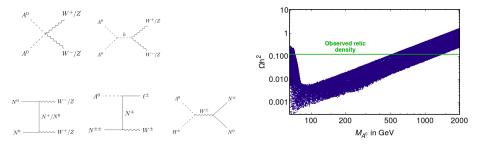
- Φ_2 does not get vev being an Z_2 odd particle.
- The physical scalar masses after electroweak symmetry breaking are:

$$\begin{split} M_h^2 &= 2\lambda_1 v^2 \\ M_{H^0/A^0}^2 &= m_{\Phi_2}^2 + \frac{1}{2} v^2 \lambda_{L/S} \\ M_{H^\pm}^2 &= m_{\Phi_2}^2 + \frac{1}{2} v^2 \lambda_3, \end{split}$$

where, $\lambda_{L/S} = \lambda_3 + \lambda_4 \pm 2\lambda_5$.

• Masses of each components of N are degenerate at the tree level, and they are equal to M_N .

• At one-loop level, mass splitting occurs as:

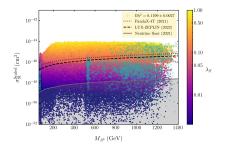

$$\Delta M_{N^{\pm}N^{0}} = \frac{\alpha_{2}M_{N}}{4\pi} \left[(s_{W}^{2} + 1)\mathcal{G}\left(\frac{M_{Z}}{M_{N}}\right) - \mathcal{G}\left(\frac{M_{W}}{M_{N}}\right) \right],$$
$$\Delta M_{N^{\pm\pm}N^{0}} = \frac{\alpha_{2}M_{N}}{4\pi} \left[4 s_{W}^{2}\mathcal{G}\left(\frac{M_{Z}}{M_{N}}\right) \right].$$

where,
$$\mathcal{G}(x) = \frac{x}{2} \left[2x^3 \ln x - 2x + (x^2 + 2)\sqrt{x^2 - 4} \ln(\frac{x^2 - 2 - x\sqrt{x^2 - 4}}{2}) \right]$$

• For $M_N \ge 400 \,\text{GeV}, \, \Delta M_{N^{\pm}N^0} \sim 500 \,\text{MeV}, \quad \Delta M_{N^{\pm\pm}N^0} \sim 1.4 \,\text{GeV}.$

Nucl.Phys.B 753 (2006) 178-194

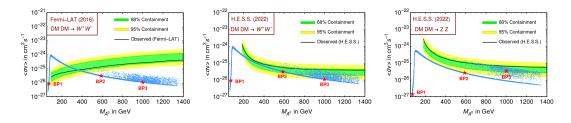
Dark Matter Relic Density


- Annihilation modes of \mathbb{Z}_2 particles: $\Phi_2 \Phi_2 \to SM SM$ and $NN \to SM SM$.
- Co-annihilation modes of \mathbb{Z}_2 particles: $N \Phi_2 \to SM SM$.
- Co-scattering of \mathbb{Z}_2 particles: $\Phi_2 \Phi_2 \leftrightarrow N N$.
- Late decay effect: $N \to \Phi_2$ SM.

- The observed relic of $\Omega h^2 = 0.1199 \pm 0.0027$.
- A lower mass region satisfying relic around 70 GeV is due to the annihilation via s-channel Higgs boson exchange.
- Masses above 1.4 TeV are ruled out being overabundant.

Planck collaboration, Astron. Astrophys. 641 (2020) A6

Dark Matter Direct Detection


• Spin-independent scattering cross-section depends on the Higgs portal coupling as

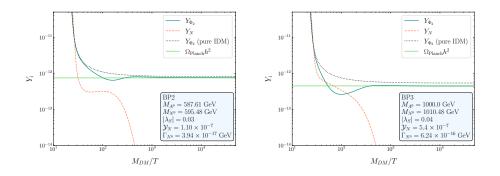
$$\sigma_{\rm SI} \simeq \frac{\lambda_S^2 f_n^2}{4\pi M_h^4} \frac{M_n^4}{(M_n + M_{A^0})^2}$$

- The most stringent upper bound on Higgs portal coupling is from LUX-ZEPLIN experiment, excludes $|\lambda_S| \ge 0.5$ for $M_{A^0} > 500$ GeV.
- $|\lambda_S| \leq 0.01$ is excluded by neutrino floor bound.

PandaX-4T collaboration, Phys. Rev. Lett. 127 (2021) 261802 LZ collaboration, Phys.Rev.Lett. 131 (2023) 4, 041002 APPEC committee report, Rept. Prog. Phys. 85 no. 5, (2022) 056201

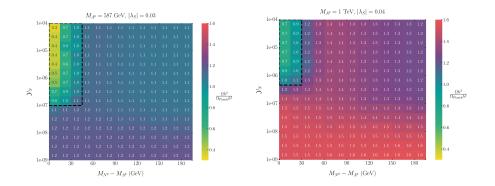
Dark Matter Indirect Detection

- The dominant annihilation modes of A^0 are $W^{\pm}W^{\mp}$ and ZZ.
- Fermi-LAT and HESS detect high energy photons that can come from dark matter halos annihilating into $W^{\pm}W^{\mp}$ or ZZ.

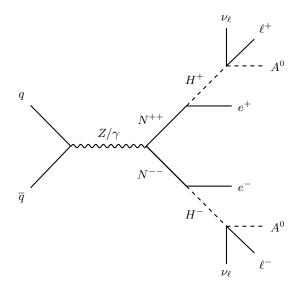

H.E.S.S. collaboration, Phys. Rev. Lett. 129 (2022) 111101 MAGIC, Fermi-LAT collaboration, JCAP 02 (2016) 039

Benchmark Points

BP	M_{A^0} (GeV)	$\begin{array}{c} M_{H^0} \\ (\text{GeV}) \end{array}$	$M_{H^{\pm}}$ (GeV)	$egin{array}{c} M_{N^0} \ ({ m GeV}) \end{array}$	M_{N^-} (GeV)	$M_{N^{}}$ (GeV)	\mathcal{Y}_N
BP1	71.57	117.16	84.76	98.25	98.61	99.28	4.2×10^{-9}
BP2	587.6	589.4	588.2	595.5	595.9	596.8	1.1×10^{-7}
BP3	1000.0	1010.5	1001.0	1010.5	1011.0	1011.9	5.4×10^{-7}


- All of the benchmark points are satisfied by correct relic abundance, direct and indirect detection constraints.
- All of them lead to displaced decays of the VLLs.

VLL and IDM Interplay


- The yield of A^0 suffers a dip for more co-annihilation due to compressed spectra.
- Number density of A^0 increases when N decays off completely.
- Pure Inert doublet scalar shows overabundant, but the interplay (co-annihilation and decay) of N sector can bring back the DM yield in correct ballpark.

Effect of mass gap and Yukawa couplings

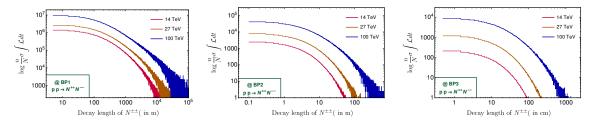
- Lower the Yukawa couplings: less co-annihilation + very late decay of the fermions.
- Higher the mass splitting: less phase space for co-annihilation.
- \implies enhancement of dark matter number density leads to overabundance.
- Higher the DM mass, lesser the annihilation ⇒ more compressed spectrum and higher Yukawa couplings for obtaining correct relic.

Collider Signature: Production and Decay of $N^{\pm\pm}$

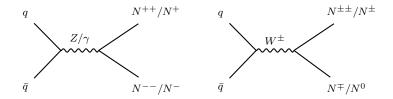
Collider Signature: Production and Decay of $N^{\pm\pm}$

• The decay width of $N^{\pm\pm}$:

$$\Gamma_{N^{\pm\pm}\to H^{\pm}\ell^{\pm}} = \frac{\mathcal{Y}_N^2 M_{N^{\pm\pm}}}{32\pi} \left(1 - \frac{M_{H^{\pm}}^2}{M_{N^{\pm\pm}}^2}\right)^2$$


- Small \mathcal{Y}_N and compressed mass spectrum lead to small decay width \implies larger decay length.
- Displaced four-lepton final state.

Displaced decay length distribution of $N^{\pm\pm}$


• The decay width and rest mass decay length off $N^{\pm\pm}$ for three benchmark points:

	BP1		BP2		BP3		
	$\mathcal{Y}_N = 4.2 \times 10^{-9}$		$\mathcal{Y}_N = 1.1 \times$	10^{-7}	$\mathcal{Y}_N = 5.4 \times 10^{-7}$		
$N^{\pm\pm}$	$\Gamma_{\rm tot} ({\rm GeV})$	$c au_0~({ m m})$	$\Gamma_{\rm tot} \ ({\rm GeV})$	$c au_0~({ m m})$	$\Gamma_{\rm tot} \ ({\rm GeV})$	$c\tau_0$ (m)	
	1.27×10^{-18}	155.42	5.92×10^{-17}	3.33	1.34×10^{-15}	0.15	

• The decay length distribution considering the boost effect:

Various Production Modes and Number of Events with 2-Displaced Leptons

• The electrons, produced displaced, can be identified by reconstructing the tracker hits at CMS/ATLAS ECal.

Final States:		Centre of mass energies at					
2 displaced leptons + 0 jet with	BPs	$14 { m TeV}$		$27 { m TeV}$		$100 { m TeV}$	
2 displaced leptons + 0 jet with		CMS	ATLAS	CMS	ATLAS	FCC-hh detector	
$p_{T_{\ell_1}} \ge 20 \text{GeV} \& \\ p_{T_{\ell_2}} \ge 10 \text{GeV} \end{cases}$	BP1	1108.2	2112.5	2107.0	3831.5	40162.2	
$p_{T_{\ell_{1,2}}} \ge 10 \mathrm{GeV}$	BP2	647.3	1068.5	2300.2	3927.4	28388.6	
$P^{I}\ell_{1,2} = 10 \text{ GeV}$	BP3	329.7	329.7	2113.5	2113.5	11401.5	

Example 4: Inert Triplet Model (ITM) at Muon Collider

Example 4: Inert Triplet Model (ITM) at Muon Collider

What kind of signatures?

• Disappearing charged track(s) + forward muon(s).

Example 4: Inert Triplet Model (ITM) at Muon Collider

What kind of signatures?

• Disappearing charged track(s) + forward muon(s).

Cause of this unique signature

• Compressed mass spectrum between the charged and neutral component.

The Model

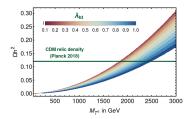
• Extend the Standard Model scalar with an SU(2) triplet having zero hypercharge.

$$\mathcal{T} = \frac{1}{2} \begin{pmatrix} T^0 & \sqrt{2}T^+ \\ \sqrt{2}T^- & -T^0 \end{pmatrix}.$$

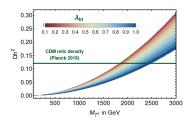
• The scalar potential:

$$V(\Phi,\mathcal{T}) = \mu_h^2 \Phi^{\dagger} \Phi + \mu_T^2 Tr\left(\mathcal{T}^{\dagger} \mathcal{T}\right) + \lambda_h \left| \Phi^{\dagger} \Phi \right|^2 + \lambda_t \left(Tr \left| \mathcal{T}^{\dagger} \mathcal{T} \right| \right)^2 + \lambda_{ht} \left(\Phi^{\dagger} \Phi \right) Tr \left(\mathcal{T}^{\dagger} \mathcal{T} \right).$$

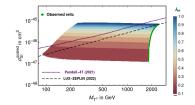
- \mathcal{T} is odd under a discrete symmetry, all the SM fields are even $\implies T^0$ does not get a vev.
- After EWSB, scalar mass spectrum: $M_h^2 = 2\lambda_h v^2$, $M_{T^0}^2 = M_{T^{\pm}}^2 = \frac{1}{2}\lambda_{ht}v^2 + \mu_T^2$.
- At tree-level, T^0 and T^{\pm} are degenerate; at one-loop level, $M_{T^{\pm}} M_{T^0} \sim 166 \,\text{MeV}$.
- T^0 is the lightest inert particle \implies dark matter candidate!
- Small mass splitting leads to long lifetimes \implies displaced decays. Rest mass decay length \sim 5.7 cm.
- Decay branching ratios:

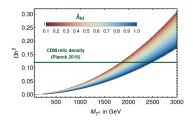

$$\Gamma(T^{\pm} \to T^0 \pi^{\pm}) \quad Br \sim 97.7\%,$$

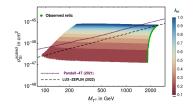
$$\Gamma(T^{\pm} \to T^0 e^{\pm} \nu_e) \quad Br \sim 2\%,$$

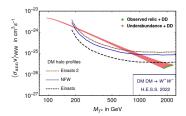

$$\Gamma(T^{\pm} \to T^0 \mu^{\pm} \nu_{\mu}) \quad Br \sim 0.25\%,$$

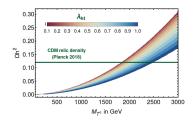
Cirelli et al, Nucl. Phys. B 753 (2006) 178-194

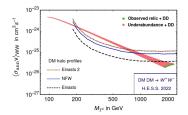

• DM Relic Density

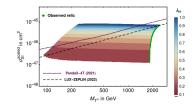

• DM Relic Density

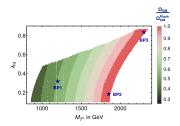

• DM Direct Detection


• DM Relic Density


• DM Direct Detection


• DM Indirect Detection


• DM Relic Density

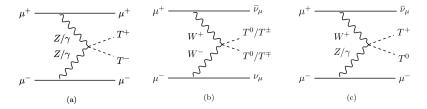

• DM Indirect Detection

• DM Direct Detection

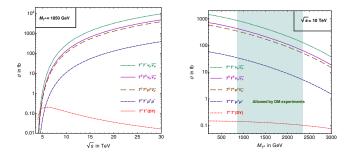
• Benchmarks for collider study

Why a muon collider?

- Production rates of TeV scale particles are very small at the 14 TeV LHC, as well as a 27 TeV upgrade.
- Muons are fundamental particles: all of the centre-of-mass energy is available for collision.
- Less background from QCD processes: hadronically clean environment: higher precision.
- Aimed to be a high-precision, high-luminosity discovery machine for BSM particles.
- Centre of mass energies and luminosities goal:
 - $3 \,\mathrm{TeV} \rightarrow 1 \,\mathrm{ab^{-1}}$
 - $6 \,\mathrm{TeV} \rightarrow 4 \,\mathrm{ab^{-1}}$
 - $10 \,\mathrm{TeV} \rightarrow 10 \,\mathrm{ab^{-1}}$

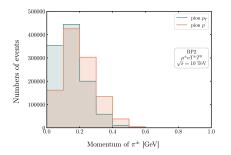

Why a muon collider?

- Production rates of TeV scale particles are very small at the 14 TeV LHC, as well as a 27 TeV upgrade.
- Muons are fundamental particles: all of the centre-of-mass energy is available for collision.
- Less background from QCD processes: hadronically clean environment: higher precision.
- Aimed to be a high-precision, high-luminosity discovery machine for BSM particles.
- Centre of mass energies and luminosities goal:
 - $3 \text{ TeV} \rightarrow 1 \text{ ab}^{-1}$
 - $6 \,\mathrm{TeV} \rightarrow 4 \,\mathrm{ab^{-1}}$
 - $10 \,\mathrm{TeV} \rightarrow 10 \,\mathrm{ab^{-1}}$


Muon collider detector

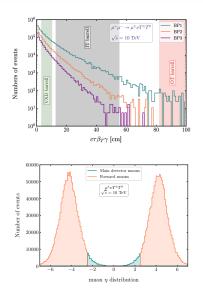
- Less SM QCD backgrounds, but muon collider suffers from Beam Induced Backgrounds (BIB): soft photons, leptons and charged hadrons coming from beam muons decaying in flight.
- BIB is mostly in the forward directions with $|\eta| \ge 2.5$: Tungsten nozzles to be installed so they can be absorbed. Tracking system and calorimeter coverage up to $|\eta| \le 2.5$ only.
- VBF spectator muons are high-energy and highly forward: can pass through nozzles, can be detected at dedicated forward muon facility.

Production of ITM scalars from VBF at a muon collider



• At higher energies, muon colliders are essentially vector boson fusion (VBF) machines, as cross-sections grow $\propto \log^n(s/M_V^2)$.

Final States for Model Signatures

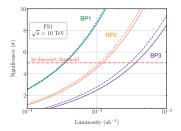

 $\leftarrow T^+T^-\mu^+\mu^-$

- Displaced decay of $T^{\pm} \to \pi^{\pm} T^0$ gives very soft pions: difficult to detect due to BIB.
- Invisible decay product \rightarrow Disappearing charged tracks (DCTs) for T^{\pm}
- High-energy VBF muons with high pseudorapidity: Forward muons : can be tagged
- VBF spectator neutrinos are not detectable.

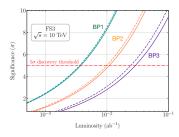
- $\leftarrow T^+ T^- \mu^+ \mu^-, \quad T^\pm T^0 \mu^\pm \mu^0$ • FS1: 1 DCT + 1 Forward muon $\leftarrow T^+T^-\mu^+\mu^-$
- FS2: 2 DCT + 2 Forward muon
- FS3: 1 DCT + 2 Forward muon
- $\leftarrow T^+T^-\mu^+\mu^-$ • FS4: 2 DCT + 1 Forward muon

Signal Kinematics

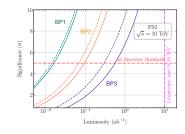
Signal criteria for displaced charged tracks:

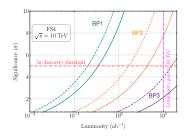

- $0.7 \operatorname{rad} < \theta < 2.44 \operatorname{rad}$ (barrell).
- 5.1 cm < decay radius < 148.1 cm.

Signal criteria for Forward muons (μ_F) :


- $2.5 \le |\eta| \le 7.0.$
- $p_{\mu_F} \ge 300 \,\text{GeV}.$

We simulate the events with Delphes muon collider card.


Discovery Projections at 10 TeV Muon Collider


• 1 DCT + 1 Forward muon

• 1 DCT + 2 Forward muon

• 2 DCT + 2 Forward muon

• 2 DCT + 1 Forward muon

Conclusions

- Type-I and -III seesaw models could be interesting in searching for LLPs.
- The parameter space, that can be sensitive to CMS, ATLAS and MATHUSLA via LLP searches are discussed.
- Two successive displacements can be observed for triplet extension of SM in case of lower Yukawa couplings $(Y_N \lesssim 10^{-8})$.
- We study the interplay between the Z_2 odd Higgs doublet scalar and the SU(2) triplet vector like lepton, where a compressed spectrum in the dark sector, and small Yukawa couplings lead to interplay between the VLL and the IDM in obtaining the correct relic.
- The same factors lead to displaced multi-lepton signatures at the colliders.
- The Inert Triplet Model is a simple scalar extension providing a DM candidate, where the compressed mass spectrum leads to disappearing charged track signatures at the colliders.
- The triplet scalars can be efficiently produced from VBF at a muon collider.
- Final states of 1-2 DCTs + 1-2 Forward Muons can effectively probe the model over a TeV-scale mass range allowed by DM experiments.

References

- 1. Displaced Higgs production in Type-III seesaw at the LHC/FCC, MATHUSLA and muon collider, Chandrima Sen, Priyotosh Bandyopadhyay, Saunak Dutta, Aleesha KT, Eur.Phys.J.C 82 (2022) 3, 230.
- 2. Boosted displaced decay of right-handed neutrinos at CMS, ATLAS and MATHUSLA, Priyotosh Bandyopadhyay, Eung Jin Chun, Chandrima Sen, JHEP 02 (2023) 103
- 3. Interplay of inert doublet and vector-like lepton triplet with displaced vertices at the LHC/FCC and MATHUSLA, Priyotosh Bandyopadhyay, Mariana Frank, Snehashis Parashar, Chandrima Sen, arXiv: 2310.08883 [hep-ph], accepted in JHEP.
- 4. Probing Inert Triplet Model at a multi-TeV muon collider via vector boson fusion with forward muon tagging, Priyotosh Bandyopadhyay, Snehashis Parashar, Chandrima Sen, J.H. Song, arXiv: 2401.02697 [hep-ph], in communication with JHEP.

Backup Slides

Boltzmann equations

$$\frac{dY_{A^{0}}}{dx} = -\frac{1}{x^{2}} \frac{s(M_{A^{0}})}{H(M_{A^{0}})} \left[\langle \sigma v \rangle_{1100} \left(Y_{A^{0}}^{2} - (Y_{A^{0}}^{eq})^{2} \right) + \langle \sigma v \rangle_{1122} \left(Y_{A^{0}}^{2} - Y_{N^{0}}^{2} \frac{(Y_{A^{0}}^{eq})^{2}}{(Y_{N^{0}}^{eq})^{2}} \right) + \langle \sigma v \rangle_{1200} \left(Y_{A^{0}} Y_{N^{0}} - Y_{A^{0}}^{eq} Y_{N^{0}}^{eq} \right) \right] + \frac{x\Gamma_{N^{0} \to A^{0}\nu}}{H(M_{A^{0}})} \left(Y_{N^{0}} - Y_{A^{0}} \frac{Y_{N^{0}}^{eq}}{Y_{A^{0}}^{eq}} \right),$$
(1)

$$\frac{dY_{N^{0}}}{dx} = -\frac{1}{x^{2}} \frac{s(M_{A^{0}})}{H(M_{A^{0}})} \left[\langle \sigma v \rangle_{2200} \left(Y_{N^{0}}^{2} - (Y_{N^{0}}^{eq})^{2} \right) - \langle \sigma v \rangle_{1122} \left(Y_{A^{0}}^{2} - Y_{N^{0}}^{2} \frac{(Y_{A^{0}}^{eq})^{2}}{(Y_{N^{0}}^{eq})^{2}} \right) + \langle \sigma v \rangle_{1200} \left(Y_{A^{0}} Y_{N^{0}} - Y_{A^{0}}^{eq} Y_{N^{0}}^{eq} \right) \right] - \frac{x\Gamma_{N^{0} \to A^{0}\nu}}{H(M_{A^{0}})} \left(Y_{N^{0}} - Y_{A^{0}} \frac{Y_{N^{0}}^{eq}}{Y_{A^{0}}^{eq}} \right).$$
(2)

We denote the scalar dark sector with $1 \equiv [A^0, H^0, H^{\pm}]$, the fermionic dark sector with $2 \equiv [N^0, N^{\pm}, N^{\pm\pm}]$ and with $0 \equiv$ all SM particles.