STAROBINSKY INFLATION AND BEYOND IN EINSTEIN-CARTAN GRAVITY

arXiv: 2402.05358

MUZI HONG IN COLLABORATION WITH MINXI HE AND KYOHEI MUKAIDA

1. Introduction (Einstein—Cartan gravity; inflation theory) 2. Propagating degree of freedom in EC gravity as inflatons

- 3. Conclusions and future works

Introduction (Einstein—Cartan gravity; inflation theory) 1. 2. Propagating degree of freedom in EC gravity as inflatons

- 3. Conclusions and future works

OUTLINE

Torsion and metricity condition

• (textbook) metric formalism: torsion × violation of metricity ×

Einstein—Cartan gravity: torsion V violation of metricity X

TORSION AND METRICITY

- Metric tensor $g_{\mu\nu}(x)$ invariant square of an infinitesimal line element: $ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$
- Affine connection $\overline{\Gamma}_{\nu\mu}^{\lambda}(x)$ infinitesimal parallel transport: $A_{\mu}(x + \Delta x)_{\mu} \equiv A_{\mu}(x) + \overline{\Gamma}_{\nu\mu}^{\lambda}(x) \Delta x^{\nu} A_{\lambda}(x)$ covariant derivative: $\nabla_{\nu} A_{\mu} \equiv \lim_{\Delta x \to 0} \frac{1}{\Delta x^{\nu}} \{ A_{\mu} (x + \Delta x) - A_{\mu} (x + \Delta x)_{\mu} \}$ $= \partial_{\nu} A_{\mu}(x) - \bar{\Gamma}^{\lambda}_{\nu\mu}(x) A_{\lambda}(x)$

TORSION AND METRICITY

• Torsion $T^{\lambda}_{\mu\nu} \equiv \bar{\Gamma}^{\lambda}_{\mu\nu} - \bar{\Gamma}^{\lambda}_{\nu\mu}$

 $\equiv R^{\rho}_{\sigma\mu\nu}V^{\sigma} - T^{\lambda}_{\mu\nu}\nabla_{\lambda}V$

• Curvature tensor $\bar{R}^{\rho}_{\sigma\mu\nu} \equiv \partial_{\mu}\bar{\Gamma}^{\rho}_{\nu\sigma} - \partial_{\nu}\bar{\Gamma}^{\rho}_{\mu\sigma} + \bar{\Gamma}^{\rho}_{\mu\lambda}\bar{\Gamma}^{\lambda}_{\nu\sigma} - \bar{\Gamma}^{\rho}_{\nu\lambda}\bar{\Gamma}^{\lambda}_{\mu\sigma}$ Ricci scalar $\bar{R} \equiv g^{\mu\nu} \bar{R}^{\rho}_{\mu\rho\nu}$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

$[\nabla_{\mu},\nabla_{\nu}]V^{\rho} = (\partial_{\mu}\bar{\Gamma}^{\rho}_{\nu\sigma} - \partial_{\nu}\bar{\Gamma}^{\rho}_{\mu\sigma} + \bar{\Gamma}^{\rho}_{\mu\lambda}\bar{\Gamma}^{\lambda}_{\nu\sigma} - \bar{\Gamma}^{\rho}_{\nu\lambda}\bar{\Gamma}^{\lambda}_{\mu\sigma})V^{\sigma} - (\bar{\Gamma}^{\lambda}_{\mu\nu} - \bar{\Gamma}^{\lambda}_{\nu\mu})\nabla_{\lambda}V^{\rho}$

TORSION AND METRICITY

• Metricity condition $\nabla_{\lambda}g^{\mu\nu} = \partial_{\lambda}g^{\mu\nu} + \bar{\Gamma}^{\mu}_{\lambda\rho}g^{\rho\nu} + \bar{\Gamma}^{\nu}_{\lambda\rho}g^{\mu\rho} = 0$

the length of a vector does not change with parallel transport $g^{\mu\nu}(x + \Delta x)A_{\mu}(x + \Delta x)_{\mu}A_{\nu}(x + \Delta x)_{\mu} = g^{\mu\nu}(x)A_{\mu}(x)A_{\nu}(x)$ $(g^{\mu\nu}(x) + \partial_{\lambda}g^{\mu\nu}(x)\Delta x^{\lambda})(A_{\mu}(x) + \bar{\Gamma}^{\rho}_{\lambda\mu}A_{\rho}\Delta x^{\lambda})(A_{\nu}(x) + \bar{\Gamma}^{\rho}_{\lambda\nu}A_{\rho}\Delta x^{\lambda}) = g^{\mu\nu}(x)A_{\mu}(x)A_{\nu}(x)$ $\nabla_{\lambda} g^{\mu\nu} = \partial_{\lambda} g^{\mu\nu} + \bar{\Gamma}^{\mu}_{\lambda\rho} g^{\rho\nu} + \bar{\Gamma}^{\nu}_{\lambda\rho} g^{\mu\rho} = 0$

• (textbook) metric formalism: torsion × violation of metricity ×

• Einstein—Cartan gravity: torsion V violation of metricity X

• Palatini formalism: torsion × violation of metricity

• Metric Affine gravity: torsion violation of metricity v

(TEXTBOOK) METRIC FORMALISM

- (textbook) metric formalism: torsion × violation of metricity ×
- Torsion is zero: $T^{\lambda}_{\mu\nu} \equiv \bar{\Gamma}^{\lambda}_{\mu\nu} \bar{\Gamma}^{\lambda}_{\nu\mu} = 0$ Metricity condition is satisfied: $\nabla_{\lambda}g^{\mu\nu} = \partial_{\lambda}g^{\mu\nu} + \bar{\Gamma}^{\mu}_{\lambda\rho}g^{\rho\nu} + \bar{\Gamma}^{\nu}_{\lambda\rho}g^{\mu\rho} = 0$ $\bar{\Gamma}^{\lambda}_{\alpha\beta} = \Gamma^{\lambda}_{\alpha\beta} \equiv \frac{1}{2} g^{\lambda\sigma} (\partial_{\alpha}g_{\beta\sigma} + \partial_{\beta}g_{\alpha\sigma} - \partial_{\sigma}g_{\alpha\beta})$ The affine connection $\overline{\Gamma}_{\alpha\beta}^{\lambda}$ is equivalent to the Levi-Civita connection $\Gamma_{\alpha\beta}^{\lambda}$ in metric formalism $\Gamma^{\lambda}_{\alpha\beta}$ is symmetric about the lower indices and determined by the metric tensor $g^{\mu\nu}$

• Einstein—Cartan gravity: torsion V violation of metricity X

- Decomposing torsion $T^{\lambda}_{\mu\nu} \equiv \overline{\Gamma}^{\lambda}_{\mu\nu} \overline{\Gamma}^{\lambda}_{\nu\mu}$
- $\Gamma^{\lambda}_{\alpha\beta} \equiv \frac{1}{2} g^{\lambda\sigma} (\partial_{\alpha}g_{\beta\sigma} + \partial_{\beta}g_{\alpha\sigma} \partial_{\sigma}g_{\alpha\beta}) \text{ in metric formalism}$
- Ricci scalar in EC gravity

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• Using torsion to express the relation between $\bar{\Gamma}^{\lambda}_{\mu\nu}$ in EC gravity and

10

• Decomposing torsion $T^{\lambda}_{\mu\nu}$

vector $T_{\mu} \equiv T^{\alpha}_{\ \mu\alpha}$ axial vector $S^{\beta} \equiv E^{\mu\nu\alpha\beta}T_{\mu\nu\alpha}$ tensor $q_{\alpha\beta\gamma} \equiv T_{\alpha\beta\gamma} - \frac{1}{3}(g_{\alpha\gamma}T_{\beta} - g_{\alpha\beta}T_{\gamma}) + \frac{1}{6}E_{\alpha\beta\gamma\mu}S^{\mu}$

$$J \equiv \bar{\Gamma}^{\lambda}_{\mu\nu} - \bar{\Gamma}^{\lambda}_{\nu\mu}$$

• Contorsion tensor $K^{\mu}_{\alpha\beta}$ $\int_{\alpha\beta} \frac{1}{2} \left(torsion \quad T^{\lambda}_{\mu\nu} \equiv \bar{\Gamma}^{\lambda}_{\mu\nu} - \bar{\Gamma}^{\lambda}_{\nu\mu} \right)$ $K^{\mu}_{\ \alpha\beta} = \frac{1}{2} \left(T^{\mu}_{\ \alpha\beta} + T^{\mu}_{\ \alpha\beta} + T^{\mu}_{\ \beta\alpha} \right)$

 $K^{\mu}_{\ \alpha\beta} \equiv \bar{\Gamma}^{\mu}_{\ \alpha\beta} - \Gamma^{\mu}_{\ \alpha\beta}, \qquad \Gamma^{\lambda}_{\ \alpha\beta} \equiv \frac{1}{2} g^{\lambda\sigma} (\partial_{\alpha}g_{\beta\sigma} + \partial_{\beta}g_{\alpha\sigma} - \partial_{\sigma}g_{\alpha\beta})$

• Metricity condition $\nabla_{\lambda}g^{\mu\nu} = \partial_{\lambda}g^{\mu\nu} + \bar{\Gamma}^{\mu}_{\lambda\rho}g^{\rho\nu} + \bar{\Gamma}^{\nu}_{\lambda\rho}g^{\mu\rho} = 0$

 Ricci Scalar $\bar{R}^{\rho}_{\sigma\mu\nu} \equiv \partial_{\mu}\bar{\Gamma}^{\rho}_{\nu\sigma} - \partial_{\nu}\bar{\Gamma}^{\rho}_{\mu\sigma} + \bar{\Gamma}^{\rho}_{\mu\lambda}\bar{\Gamma}^{\lambda}_{\nu\sigma} - \bar{\Gamma}^{\rho}_{\nu\lambda}\bar{\Gamma}^{\lambda}_{\mu\sigma}$ $\bar{R} \equiv g^{\mu\nu} \bar{R}^{\rho}_{\mu\rho\nu}$

in metric formalism: define *R* using $\Gamma^{\lambda}_{\alpha\beta} \equiv \frac{1}{2}g^{\lambda\sigma}(\partial_{\alpha}g_{\beta\sigma} + \partial_{\beta}g_{\alpha\sigma} - \partial_{\sigma}g_{\alpha\beta})$

 $\frac{S^{\mu}}{2} + \frac{1}{2} q^{\mu\nu\rho} q_{\mu\nu\rho}$

- Einstein—Hilbert action in metric formalism $S = \left[\sqrt{-g}d^4x \frac{M_{Pl}^2}{2}R\right]$
- from metric formalism $2\nabla_{\mu}T^{\mu}$: boundary term T^{μ} , S^{μ} , $q^{\mu\alpha\beta}$ are not dynamical and constrained to zero

Introduction (Einstein—Cartan gravity; inflation theory) 1. 2. Propagating degree of freedom in EC gravity as inflatons

- 3. Conclusions and future works

Let's go back to (textbook) metric formalism for this section!

Motivation of inflation theory

Single-field slow-roll inflation

Quick introduction to cosmological perturbations

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

OUTLINE

16

• Horizon Problem Flatness Problem

- Friedmann Equations
- Comoving Hubble radius
- Horizon problem and inflation

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

MOTIVATION OF INFLATION THEORY

17

FRIEDMANN EQUATIONS

- FRW metric $ds^2 = -dt^2 + a^2(t)(d\chi^2 + \chi^2(d\theta^2 + \sin^2\theta d\phi^2))$
- Stress-energy tensor of perfect fluid $T^{\mu}_{\nu} = -\left((\varepsilon + p)u^{\mu}u_{\nu} + p\delta^{\mu}_{\nu}\right)$ in comoving frame $u^{\mu} = (1, 0, 0, 0)$
- Putting these in Einstein equation first Friedmann equation $\ddot{a} = -\frac{4\pi}{3}(\varepsilon + 3p)a$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

3D flat, homogeneous and isotropic distance element

second Friedmann equation $H^2 = \frac{8\pi}{3}\varepsilon$ with $H \equiv \frac{\dot{a}}{a}$

COMOVING HUBBLE RADIUS

- Energy conservation equation $T^{\alpha}_{0;\alpha} = 0$ $\dot{\varepsilon} = -3H(\varepsilon + p)$ with $H \equiv \frac{\dot{a}}{a}$ $\varepsilon \propto a^{-3(1+w)}$ with $w \equiv \frac{p}{\varepsilon}$
- Together with second Friedman comoving Hubble radius (aH)

In equation
$$H^2 = \frac{8\pi}{3}\varepsilon$$

$$^{-1} \propto a^{\frac{1}{2}(1+3w)}$$

WHAT IS COMOVING HUBBLE RADIUS?

• Physical distance & comoving distance $ds^2 = -dt^2 + a^2(t)(d\chi^2 + \chi^2(d\theta^2 + \sin^2\theta d\phi^2))$ $dl = a(t)d\chi$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

The length of the large square?

How many grids?

WHAT IS COMOVING HUBBLE RADIUS?

• Characteristic length-scale Hubble length $d \sim H^{-1}$

• comoving Hubble length $(aH)^{-1} \propto a^{\frac{1}{2}(1+3w)}$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

Within this scale, particles can "communicate with" each other

INCREASING COMOVING HUBBLE RADIUS?

- $(aH)^{-1} \propto a^{\frac{1}{2}(1+3w)}$
- Radiation-dominated $w = \frac{1}{3}$ & Matter-dominated w = 0increasing $(aH)^{-1}$

• comoving wave number k of fluctuations constant over time for each mode $1/k \gg (aH)^{-1}$: mode far beyond "horizon" $1/k \ll (aH)^{-1}$: mode deep within "horizon"

Horizon problem: how can cosmic microwave background (CMB) be so homogeneous and isotropic without ever talking to each other???

INFLATION THEORY

c.f. Flatness problem is also from an (forever) increasing comoving Hubble radius

How to realize inflation?

- The simplest models of inflation
- inflaton $\phi(t)$

$$S = \int \sqrt{-g} d^4 x \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$

• Stress-energy tensor $2 \quad \frac{\delta S}{\delta S}$ $T^{\mu\nu} \equiv -\frac{2}{\sqrt{-g}} \frac{\delta g_{\mu\nu}}{\delta g_{\mu\nu}}$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

$$\varepsilon = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
$$p = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$
$$w =$$

 $\dot{\phi}^2 \ll V(\phi)$ to make $w \sim -1$

n

8

- Dynamics of inflaton and FRW inflaton's equation of motion the second Friedmann equation
- Slow-roll parameters for $\dot{\phi}^2 \ll V(\phi)$, $\epsilon \equiv \frac{1}{2} \frac{\dot{\phi}^2}{H^2} \ll 1$ for this to last a sufficiently long time, $\eta \equiv -\frac{\dot{\phi}}{H\dot{\phi}} \ll 1$

geometry

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0$$

 $H^2 = \frac{8\pi}{3} \left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right)$

• Another set of slow-roll parameters — shape of the potential! $\epsilon_{V} \equiv \frac{M_{Pl}^{2}}{2} \left(\frac{V_{,\phi}}{V}\right)^{2} \ll 1$ $\eta_{V} \equiv M_{Pl} \frac{V_{,\phi\phi}}{V} \ll 1$

• One can show $\epsilon \approx \epsilon_V$, $\eta \approx \eta_V - \epsilon_V$

Examples

 Quadratic chaotic inflation $V(\phi) \propto \phi^2$

• Starobinsky inflation

$$V(\phi) \propto \left(1 - e^{-\sqrt{\frac{2}{3}}\frac{\phi}{M_{Pl}}}\right)^2$$

INFLATION AND COSMOLOGICAL PERTURBATIONS

• $\delta g_{\mu\nu}(t, \vec{x})$ can be decomposed into scalar, vector, tensor parts

• During inflation: scalar perturbations: created by $\delta\phi$ vector perturbations: not created by inflation tensor perturbations: gravitational waves

- Observational quantities (aCMB scale) scalar spectral index $n_s - 1 = \frac{d\ln(\text{power spectrum about scalar})}{d\ln(\frac{1}{2})}$ dlnk
 - tensor-to-scalar ratio (power spectrum about scalar) (power spectrum about tensor)
- of single-field slow-roll inflation and compared with observation

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• These quantities can be expressed using slow-roll parameters in the case

1. Introduction (Einstein—Cartan gravity; inflation theory) Propagating degree of freedom in EC gravity as inflatons

- 2.
- 3. Conclusions and future works

OUTLINE

- Extra propagating degree of freedom (scalaron) in f(R) theory of metric formalism

- Nieh—Yan term and Holst term
- Nieh—Yan term
- Nieh—Yan term and Holst term

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• No extra propagating degree of freedom in f(R) theory of EC gravity

• Extra propagating degree of freedom as inflaton in EC gravity with

• Extra propagating degree of freedom as inflaton in EC gravity with

Scaleron in f(R) in metric formalism

•
$$S = \int \sqrt{-g_J} d^4 x \frac{M_{Pl}^2}{2} f(R_J)$$

- Introducing auxiliary field χ $S = \left[\sqrt{-g_J} d^4 x \frac{M_{Pl}^2}{2} [(R_J - \chi) f'(\chi) + f(\chi)] \right]$
- $(R_I \chi) f''(\chi) = 0$, assuming $f''(\chi) \neq 0$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• Solving the constraint equation of χ will bring back the starting action

SCALERON IN
$$f(R)$$

$$S = \int \sqrt{-g_J} d^4 x \frac{M_{Pl}^2}{2} [(R_J - \chi) f'(\chi) + \chi]$$

 $g_{E\mu\nu} = \Omega^2 g_{J\mu\nu}, \ \Omega^2 \equiv f'(\chi), \text{ assuming } \Omega^2 > 0 \text{ to maintain the sign before } R$ $R_J = \Omega^2 R_E - 6\Omega^3 \square_E \Omega^{-1}$

$$S = \int \sqrt{-g_E} d^4 x \left[\frac{M_{Pl}^2}{2} R_E - \frac{3}{4} M_{Pl}^2 \partial_{\mu} \right]$$

 $\sigma \equiv \sqrt{\frac{3}{2}} M_{Pl} \ln \Omega^2 \text{ is the scalaron field}$

• E.g. scaleron in $R + \alpha R^2$ is the inflaton in the Staronbinsky inflation Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

METRIC FORMALISM IN

 $f(\chi)$

• Performing conformal transformation from Jordan frame to Einstein frame

 $\frac{\ln \Omega^2 \partial^{\mu} \ln \Omega^2 + V(\ln \Omega^2)}{\text{Kinetic term!}}$

NO SCALERON IN f(R) IN EC GRAVITY

•
$$S = \int \sqrt{-g_J} d^4 x \frac{M_{Pl}^2}{2} f(\bar{R}_J)$$

- Introducing auxiliary field χ
- S^{μ} and $q^{\mu\nu\rho}$ constrained themselves to zero
- Integral by part, and solve the constraint equation for T^{μ} , (and performing

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

$$\Omega^{2} \equiv f'(\chi)$$

$$T^{\mu} + \frac{1}{24} S_{\mu} S^{\mu} + \frac{1}{2} q^{\mu\nu\rho} q_{\mu\nu\rho} - \chi) f'(\chi) + f(\chi)]$$

conformal transformation) $\int -\frac{1}{3}M_{Pl}^2\Omega^2 \left(T^{\mu} + \frac{3}{2}\partial_{\mu}\ln\Omega^2\right)^2 + \frac{3}{4}M_{Pl}^2\Omega^2\partial_{\mu}\ln\Omega^2\partial^{\mu}\ln\Omega^2$ A new term appears and cancels the "kinetic term" $-\frac{3}{4}M_{Pl}^2\partial_{\mu}\ln\Omega^2\partial^{\mu}\ln\Omega^2$

Introducing the Nieh—Yan term or/and the Holst term to realizing propagating degree of freedom in EC gravity and sustain inflation

NIEH-YAN TERM AND HOLST TERM

- Nieh—Yan term H. T. Nieh and M. L. Yan, J. Math. Phys. 23 (1982) 373 $\int d^4x \partial_{\mu} \left(\sqrt{-g} E^{\mu\nu\rho\sigma} T_{\nu\rho\sigma} \right) = - \int d^4x dx$
- Holst term S. Holst, Phys. Rev. D 53 (1996) 5966 $\int d^4x \sqrt{-g} E^{\mu\nu\rho\sigma} \bar{R}_{\mu\nu\rho\sigma} = \int \sqrt{-g} d^4x$
- $q^{\mu\nu\rho}$ constrained itself to zero, so let's drop it from now on
- and $S_{\mu}T^{\mu}$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

$$\partial_{\mu} \left(\sqrt{-g} S^{\mu} \right) = \int \sqrt{-g} d^4 x \, \nabla_{\mu} S^{\mu}$$

$$\left(\nabla_{\mu}S^{\mu}-\frac{2}{3}S_{\mu}T^{\mu}+\frac{1}{2}E^{\rho\sigma\mu\nu}q_{\lambda\rho\sigma}q^{\lambda}_{\mu\nu}\right)$$

• Considering linear combinations of the Nieh—Yan term and the Holst term is equivalent to considering linear combinations of Nieh-Yan term

NIEH-YAN TERM AND HOLST TERM

- Previous studies including Nieh—Yan term and Holst term
- Higgs inflation with non-minimal coupling to Higgs field

M. He, K. Kamada, and K. Mukaida, *JHEP* 01 (2024) 014

- Including only Nieh—Yan term in the context of modified gravity F. Bombacigno, S. Boudet, and G. Montani, Nucl. Phys. B 963 (2021) 115281 S. Boudet, PhD thesis, University of Trento, 2023
- Including only Holst term G. Pradisi and A. Salvio, Eur. Phys. J. C 82 no. 9, (2022) 840 A. Salvio, *Phys. Rev. D* **106** no. 10, (2022) 103510

- M. Långvik, J.-M. Ojanperä, S. Raatikainen, and S. Rasanen, Phys. Rev. D 103 no. 8, (2021) 083514 M. Shaposhnikov, A. Shkerin, I. Timiryasov, and S. Zell, JCAP 02 (2021) 008

• Let's start with the simplest model

$$S = \int \sqrt{-g} d^4 x \begin{bmatrix} \frac{M_{Pl}^2}{2} \bar{R} + \beta \left(\nabla_{\mu} S \right) \\ \text{Similar procedures} \\ \text{introducing an at} \\ \text{solving constrain} \\ \text{field redefinition} \end{bmatrix}$$
$$S = \int \sqrt{-g} d^4 x \left(\frac{M_{Pl}^2}{2} \bar{R} - \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \right)$$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

 S^{μ})²

as shown before: uxiliary field to rewrite the last term nt equations for torsion

 $f\left(\nabla_{\mu}S^{\mu}\right) = \beta\left(\nabla_{\mu}S^{\mu}\right)^{2}$

 $\mu \sigma - \frac{M_{Pl}^2}{96\beta} \sigma^2$

Chaotic quadratic inflation!

41

• One can also consider

• $S = \int \sqrt{-g_J} d^4 x \quad \left| \frac{M_{Pl}^2}{2} \bar{R}_J + \alpha_R \left(\bar{R}_J \right) \right|^2$ $S_{\rm E} = \int \sqrt{-g_{\rm E}} d^4 x \left[\frac{M_{Pl}^2}{2} R_{\rm E} - \frac{1}{2} \partial_\mu d \right]$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

$$_{\rm J} + \frac{\alpha}{2} \nabla_{\mu} S^{\mu} \Big)^2 \Big]$$

Similar procedures as shown before: • introducing an auxiliary field • solving constraint equations for torsion conformal transformation field redefinition

$$_{\mu}\sigma\partial^{\mu}\sigma - \frac{M_{Pl}^{4}}{16\alpha_{R}}\left(1 - e^{-\sqrt{\frac{2}{3}}\frac{\sigma}{\alpha M_{Pl}}}\right)^{2}$$

alpha-attractor inflation! Starobinsky inflation with $\alpha = 1$

• "General" case

•
$$S = \int \sqrt{-g} d^4 x \left[\frac{M_{Pl}^2}{2} \bar{R} + \alpha_R \bar{R}^2 + \alpha_R \bar{R}^2$$

• Introducing two auxiliary fields for each completed square to rewrite this action

 $\alpha_{\rm RS}\bar{R}\,\nabla_{\mu}S^{\mu} + \alpha_{\rm S}\left(\nabla_{\mu}S^{\mu}\right)^{2}$ $\alpha_{\rm R} \left(\bar{R} + \frac{\alpha}{2} \nabla_{\mu} S^{\mu} \right)^2 + \beta \left(\nabla_{\mu} S^{\mu} \right)^2$

- With two auxiliary fields, one generally ends up with a $p(\phi, X)$ -type theory, where X represents the kinetic term of ϕ

$$\int \sqrt{-g_{\rm E}} d^4 x \, \left[\frac{M_{Pl}^2}{2} R_{\rm E} - \frac{1}{2\Omega^4} \left(\partial_\mu \Sigma \right)^2 - \frac{M_{Pl}^4}{16\alpha_{\rm R}} \frac{(\Omega^2 - 1)^2}{\Omega^4} - \frac{\alpha^2 M_{Pl}^4}{64\beta} \left(\sqrt{\frac{2}{3}} \frac{\Sigma}{M_{Pl} \alpha \Omega^2} + \frac{1}{\Omega^2} - 1 \right)^2 \right]$$

• With both Nieh—Yan term and Holst term, we consider actions with only one completed square

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• When solving the constraint equation for the "non-dynamical" field (Ω^2) , kinetic term of the dynamical field (Σ) enters the denominator

WITH NIEH-YAN TERM AND HOLST TERM

• Models with only one completed square in the action — one auxiliary field to analyze

$$S = \int \sqrt{-g_{\rm J}} d^4 x \left[\frac{M_{Pl}^2}{2} \left(\bar{R}_{\rm J} + \zeta S_{\mu} T^{\mu} \right) + \alpha_{\rm R} \left(\bar{R}_{\rm J} + \frac{\alpha}{2} \nabla_{\mu} S^{\mu} + \frac{\tilde{\alpha}}{2} S_{\mu} T^{\mu} \right)^2 \right]$$

$$\int \text{following the same procedures as shown before}$$

$$S = \int \sqrt{-g_{\rm E}} d^4 x \left[\frac{M_{Pl}^2}{2} R_{\rm E} - \frac{M_{Pl}^2}{2} \frac{3 \left\{ \alpha e^{\sigma} + 3 \left[\zeta + (e^{\sigma} - 1) \tilde{\alpha} / 2 \right] \right\}^2}{2e^{2\sigma} + 18 \left[\zeta + (e^{\sigma} - 1) \tilde{\alpha} / 2 \right]^2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{M_{Pl}^4}{16\alpha_{\rm R}} (1 - e^{-\sigma})^2 \right]$$

- redefinition

45 Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• $f(\phi)X + V(\phi)$ can generally be turned to a canonical kinetic term and a potential by field

Deformation of Starobinsky inflation/alpha-attractor inflation for some parameter ranges

NIEH-YAN TERM AND HOLST TE

WITH NIEH-YAN TERM AND HOLST TERM

• Let's consider a simplified case

•
$$S = \int \sqrt{-g_{\rm J}} d^4 x \left[\frac{M_{Pl}^2}{2} \left(\bar{R}_{\rm J} + \zeta S_{\mu} T^{\mu} \right) + \alpha_{\rm S} \left(\nabla_{\mu} S^{\mu} + \frac{\beta}{2} S_{\mu} T^{\mu} \right)^2 \right]$$

following the same procedures as shown or taking limit of the general action
 $S = \int \sqrt{-g_{\rm E}} d^4 x \left[\frac{M_{Pl}^2}{2} R_{\rm E} - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{M_{Pl}^4}{36\alpha_{\rm S}\beta^2} \left(3\zeta + \sinh \sqrt{\beta \zeta + \sinh \gamma} \right)^2 \right]$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

before

 $\left[\frac{3}{8}\frac{\beta\phi}{M_{Pl}}\right]^{2}$

NIEH-YAN TERM AND HOLST TERM WITH

β plays the role of the factor $\left(1 - e^{-\sqrt{\frac{2}{3}}\frac{\phi}{\alpha M_{Pl}}}\right)^2$ in the exponential of alphaattractor inflation

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

 ζ controls the deviation from alpha-attractor

WITH NIEH-YAN TERM AND HOLST TERM $S = \int \sqrt{-g_{\rm J}} d^4 x \left[\frac{M_{Pl}^2}{2} \left(\bar{R}_{\rm J} + \zeta S_{\mu} T^{\mu} \right) + \alpha_{\rm S} \left(\nabla_{\mu} S^{\mu} + \frac{\beta}{2} S_{\mu} T^{\mu} \right)^2 \right]$ **Observational constraint**

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

Red trajectory (alpha-attractor inflation limit) $\zeta = -3 \times 10^4$ β from -5/2 to -1/25

Blue trajectory $\beta = -4/3$ ζ from -3×10^4 to -13

0.98

1. Introduction (Einstein—Cartan gravity; inflation theory) 2. Propagating degree of freedom in EC gravity as inflatons

- 3. Conclusions and future works

CONCLUSION AND FUTURE WORKS

can obtain Starobinsky inflation and its deformations

• Future work For fermions, torsion is naturally coupled to $j^{5\mu}$ reheating, baryogengesis...

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• By adding Nieh—Yan term or/and Holst term into EC gravity, one

- spinor fields in curved spacetime?
- Poincare gauge theory introducing veirbeins and spin connections
 - extra degrees of freedom than metric formalism

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

MOTIVATION OF EC GRAVITY

GEOMETRIC MEANING OF TORSION

- prepare two infinitesimal vectors A^{μ} and B^{μ}
- parallel transport A^{μ} along B^{μ} vector $pr_1 = B^{\mu} + A^{\mu} - \overline{\Gamma}^{\mu}_{\nu\lambda} A^{\lambda} B^{\nu}$
- Parallel transport B^{μ} along A^{μ} $pr_2 = A^{\mu} + B^{\mu} - \bar{\Gamma}^{\mu}_{\mu} B^{\lambda} A^{\nu}$

• $r_1 r_2 = pr_2 - pr_1 = (\overline{\Gamma}^{\mu}_{\nu\lambda} - \overline{\Gamma}^{\mu}_{\lambda\nu})A^{\lambda}B^{\nu} = T^{\mu}_{\nu\lambda}A^{\lambda}B^{\nu}$

• Torsion tensor measures the part that does not close

HORIZON PROBLEM EXPLAINED USING PARTICLE HORIZON

- $ds^2 = a^2(\eta)(-d\eta^2 + d\chi^2)$ with $dt = ad\eta$
- Light propagating along $\chi = \pm \eta + \text{const}$
- Particle horizon: maximum comoving distance light can propagate (in causal contact), (talked before) $\chi_p(\eta) = \eta - \eta_i = \int_{t_i}^t \frac{dt}{a} = \int_{a_i}^a d\ln a \ \frac{1}{aH}$

HORIZON PROBLEM EXPLAINED USING PARTICLE HORIZON

- Particle horizon: maximum comoving distance light can propagate $\chi_p(\eta) = \eta - \eta_i = \int_{t_i}^t \frac{dt}{a} = \int_{a_i}^a d\ln a \ \frac{1}{aH}$
- Forever increasing $\frac{1}{aH}$: the closer to today the more contributions to causally connected region

HORIZON PROBLEM EXPLAINED USING PARTICLE HORIZON

- Particle horizon: maximum comoving distance light can propagate $\chi_p(\eta) = \eta - \eta_i = \int_{t_i}^t \frac{dt}{a} = \int_{a_i}^a d\ln a \ \frac{1}{aH}$
- Inflation period (decreasing $\frac{1}{aH}$) existed: contributions to $\chi_p(\eta)$ mainly comes – from the inflation period

OBSERVATIONAL QUANTITIES

- $ds^2 = -(1+2\Phi)dt^2 + 2aB_i dx^i dt + a^2[(1-2\Psi)\delta_{ii} + E_{ii}]dx^i dx^j$
- Comoving curvature perturbation $\Re = \Psi \frac{H}{\delta\phi}$ gauge-invariant & conserved on super-horizon scales
- Mukhanov-Sasaki variable $v \equiv z \mathcal{R}$ with $z \equiv a^2 \frac{\phi^2}{H^2}$

OBSERVATIONAL QUANTITIES

•
$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0$$

dependent frequency, and calculate the vacuum expectations

•
$$\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi^3)\delta(\mathbf{k} + \mathbf{k}')P_{\mathcal{R}'}$$

• Similarly $\langle h_{\mathbf{k}} h_{\mathbf{k}'} \rangle = (2\pi^3)\delta(\mathbf{k} - \mathbf{k}')$

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

• One can quantize v_k as quantizing a harmonic oscillator with time-

(k)

 $(\mathbf{k}) = h^{+} \mathbf{k}^{\prime} P_{h}(\mathbf{k})$ for $h \equiv h^{+}, h^{\times}$

OBSERVATIONAL QUANTITIES

$$\Delta_s^2 \equiv \frac{k^3}{2\pi^2} P_{\mathcal{R}}(k) = \frac{H^2}{(2\pi)^2} \frac{H^2}{\dot{\phi}^2}$$
$$\Delta_t^2 \equiv 2\frac{k^3}{2\pi^2} P_h(k) = \frac{2}{\pi^2} \frac{H^2}{M_{Pl}^2}$$

•
$$n_s - 1 \equiv \frac{d \ln \Delta_s^2}{d \ln k} \approx 2\eta_V - 6\epsilon_V$$

 $r \equiv \frac{\Delta_t^2}{\Delta_s^2} \approx 16\epsilon_V$

How to decide α_R or α_S ?

• $\Delta_s^2(k) \approx \frac{1}{24\pi^2} \frac{V}{M_{Pl}^4} \frac{1}{\epsilon_V} \Big|_{k=aH}$ ~ 10^{-9} @CMB

• $\alpha_{\rm R} \sim 10^9$

•
$$\phi_{\min} = \sqrt{\frac{8}{3}} \frac{M_{Pl}}{\beta} \ln(-3\zeta + \sqrt{1+9})$$

•
$$V(\phi) = \frac{M_{Pl}^4}{144\alpha_S\beta^2} \left[6\zeta + e^{\sqrt{\frac{3}{8}}\frac{\beta}{M_{Pl}}(\phi + 1)} \right]$$

obtains the alpha-attractor inflation

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

SHIFTING THE LAST $V(\phi)$ $S = \int \sqrt{-g_{\rm E}} d^4 x \left[\frac{M_{Pl}^2}{2} R_{\rm E} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{M_{Pl}^4}{36\alpha_{\rm S}\beta^2} \left(3\zeta + \sinh\sqrt{\frac{3}{8}} \frac{\beta\phi}{M_{Pl}} \right)^2 \right]$

 $9(2^{2})$

 $+\phi_{\min}) - e^{-\sqrt{\frac{3}{8}}\frac{\beta}{M_{Pl}}(\phi + \phi_{\min})} \Big]^2$

• If large $|\zeta|$, the last term can be dropped ($\zeta < 0$, $\beta < 0$ here), and one

Starobinsky Inflation and beyond in Einstein-Cartan Gravity, Muzi Hong (RESCEU), arXiv: 2402.05358

MATTER & DARK ENERGY

