Berkeley week 2024

Precise Estimate of Chargino Decay Rates

Yuhei Nakayama (ICRR Theory Group)

Based on JHEP 01(2023)017 (arXiv: 2210.16035) and JHEP 03(2024)012 (arXiv: 2312.08087)

In Collaboration with Masahiro Ibe, Masataka Mishima, Satoshi Shirai

March 15, 2024

- 1. Introduction
- 2. Outline of Computation
- 3. Result & Summary

1. Introduction

- 2. Outline of Computation
- 3. Result & Summary

- 1. Introduction
 - ✓ SUSY Dark Matter
 - Importance of Compressed Region
 - Vino/Higgsino Search in Collider Experiments

Dark Matter in SUSY

The MSSM provides a few DM candidates: Bino, Wino, and Higgsino

$$\psi^0 = \left(\tilde{B}, \tilde{W}^3, \tilde{H}^0_d, \tilde{H}^0_u\right)^T$$

- ▶ The EW interactions implement the production mechanism called the thermal freeze-out → TeV-scale Wino or Higgsino
- The Bino tends to overclose the Universe unless there is a sfermion (typically stau) degenerated with the Bino

Difficulties in SUSY

- The weak-scale SUSY faces various difficulties
 - No flavor/CP violation in low-energy
 - No sparticles suggested in LHC/LEP
 - The Higgs mass tends to be lighter than 125 GeV

Is SUSY already excluded from experiments/observations?

No. SUSY can realize so-called split spectrum:

 $M_{\rm gauginos} \ll M_{\rm sfermions}$

Mass Spectra in Viable SUSY

EFT of Split SUSY

Additional low-energy parameters in Split SUSY:

- ▶ Mass of chargino $m_{\chi^{\pm}}$
- Mass(es) of neutralino(s) m_{χ^0}

What are the plausible values of the difference between these parameters?

Wino-LSP case

EW interactions provide mass difference, $\Delta m_{\pm}^{\rm rad}$

Mixing with other neutralinos (Bino, Higgsinos) also provides a tree-level mass splitting, $\Delta m_{\pm}^{\text{tree}}$ However, this is very small in the Wino-LSP case.

Wino-LSP case

Hence, the mass difference in the Wino system is determined by the radiative corrections:

$$\Delta m_{\pm} = \Delta m_{\pm}^{\text{rad}}(m_{\chi^{\pm}}) + \Delta m_{\pm}^{\text{tree}}$$
$$\Delta m_{\pm} := m_{\chi^{\pm}} - m_{\chi^{0}}$$
$$\Delta m_{\pm} := m_{\chi^{\pm}} - m_{\chi^{0}}$$

Radiative splitting is known to be around 160 MeV, far smaller than the Wino mass. Winos are highly compressed!

$$\left| m_{\chi^{\pm}} - m_{\chi^{0}} \right| \ll m_{\chi^{\pm}}, m_{\chi^{0}}$$

I'll skip the Higgsino-LSP scenario because it is too complicated!

Even in the Higgsino-LSP case, the region $|m_{\chi^{\pm}} - m_{\chi^0}| \lesssim 1 \,\text{GeV}$ is of interest phenomenologically

Point to be remembered:

Compressed region arises in viable SUSY DM models

Collider Constraint

- Mono-jet search cannot establish strong constraint on Wino/Higgsino mass
- Another observable is required to reduce BG

ISR jet + soft pions + MET (Higgsino)

ISR jet + disappearing track + MET (Wino/Higgsino)

Disappearing Track

[ATLAS, *Eur.Phys.J.C* 82 (2022) 7, 606]

 $L = 12 \,\mathrm{cm} > c\tau \sim 7 \,\mathrm{cm}$ (the decay length of Wino)

#(expected charged track) $\propto \exp(-L/c\tau)$

10% error in lifetime \rightarrow 50% error in signals

Crux:

Collider constraint is highly dependent on the prediction of the lifetime

1. Introduction

2. Outline of Computation

3. Result & Summary

Necessity of NLO

We have learned two important backgrounds in search of SUSY DM models:

- Compressed region arises in viable SUSY DM models
- 2. Collider constraint is highly dependent on the prediction of the lifetime

The necessity of NLO decay rates of chargino is a natural consequence of discussions so far.

Decay Modes of Chargino

Outline of Computation

NLO decay rate

Short-distance Correction

On-shell amplitude @ one-loop of EW theory

Virtual γ, Z, W-boson loops
 Wavefunctions
 Vertex corrections
 Box diagrams
 W-boson self-energy

▶ Masses of SM fermions can be neglected in the matching to low-energy theory: $m_f \simeq 0$, $m_{f'} \simeq 0$

 $\Delta m_{\pm} \simeq p_1 - p_2$ is far smaller than the chargino mass

$$\alpha \cdot \Delta m_{\pm}/m_{\chi} \simeq 0$$

Short-distance Correction

$$\delta\Gamma_{\rm short-distance} = [S_{\rm EW}^{\chi}(\mu_{\rm IR}) - 1] \times \Gamma_{\rm tree}$$

IR cutoff; dependence on it should be disappeared after all of the computation

Long-distance Corrections

Calculations of long-distance corrections are mode-dependent and very complicated

Basic strategy: method of effective theory (EFT)

 $\delta\Gamma_{\text{long-distance}} \supset \delta\Gamma_{\text{loops in EFT}} + \delta\Gamma_{\text{counterterms in EFT}}$

- Loop diagrams generated by EFT
- EFT is Four-Fermion theory or Chiral Perturbation Theory
- UV divergent

- Contributions to subtract
 UV divergence in EFT
- Finite parts correspond to input parameter of EFT
- Determined by renormalizable theory or experimental data

Example: Leptonic Mode

EFT for the leptonic mode:

$$\mathcal{L}_{\rm FF}^{\rm lepton} = -2\sqrt{2}G_F \left(\overline{\Psi}_{\ell}\gamma^{\mu}P_L\Psi_{\chi^-}\right) \left(\overline{\Psi}_{\chi^0}\gamma_{\mu}P_L\Psi_{\nu_{\ell}}\right) + 4\sqrt{2}G_F \left(\overline{\Psi}_{\ell}P_R\Psi_{\chi^-}\right) \left(\overline{\Psi}_{\chi^0}P_L\Psi_{\nu_{\ell}}\right)$$

$$\delta \mathcal{L}_{FF}^{\text{lepton}} = -2\sqrt{2}G_F \delta_V^L \left(\overline{\Psi}_{\ell} \gamma^{\mu} P_L \Psi_{\chi^-}\right) \left(\overline{\Psi}_{\chi^0} \gamma_{\mu} P_L \Psi_{\nu_{\ell}}\right) + 4\sqrt{2}G_F \delta_Y^R \left(\overline{\Psi}_{\ell} P_R \Psi_{\chi^-}\right) \left(\overline{\Psi}_{\chi^0} P_L \Psi_{\nu_{\ell}}\right)$$

will be chosen to reproduce $\mathcal{M}_{tree} \times \sqrt{S_{EW}^{\chi}(m_{\gamma})}$

Example: Leptonic Mode

Virtual Corrections

+ Wavefunction

Real photon emissions

Example: Leptonic Mode

Taking the limit $\Delta m_{\pm} \ll m_{\chi}$ while keeping $x := m_{\ell} / \Delta m_{\pm}$ finite

$$\delta\Gamma_{\chi\to\ell} := \Gamma_{\chi\to\ell} - \Gamma_{\chi\to\ell}^{\text{tree}}$$
$$= \left\{ \Gamma_{\chi\to\ell,m_\ell=0}^{\text{tree}} \times \frac{\alpha}{4\pi} \int_x^1 dw \,\rho_{\text{one-loop}}(w) + O(\alpha^2) \right\} + O\left(\frac{\alpha\Delta m}{m_\chi}\right)$$

- No UV/IR divergences
- No collinear divergences (No singularity in $m_{\ell} \rightarrow 0$)
- ▶ No $\log m_{\chi}$ enhancements from

long/short-distance corrections

1. Introduction

- 2. Outline of Computation
- 3. Result & Summary

Summary Plots

Comparison with Chen, Drees, and Gunion (CDG) [hep-ph/9607421]

Summary

- We have computed NLO decay rates in compressed region, where has not been addressed yet in literatures
- We estimated the short- and long-distance correction to the various decay modes
- The error in estimation of decay rate is smaller than 1% for $\Delta m_{\pm} \lesssim 1 \,\text{GeV}$