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Unfolding

Forward simulation

~ Detector |
| simulation |

Inversion

e Conventional LHC analysis involves comparing measured data with MC events simulated under NP hypothesis.
e Reconstructed LHC events present a convoluted version of the true underlying physics.

e Forward simulation chain can be highly resource intensive.

[- Invert simulation chain — apply on measured data — reconstruct parton-level }
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— compare new physics hypotheses at the parton-level.



Unfolding

e Bin-by-bin unfolding:

e Correct the information in each bin using correction factor €, computed from MC data.

Parton truth G = Ntruth,i / Nreco,i Detector level

Unfolded distribution: X, ; = X;; X G

 Matrix inversion:
e Build response matrix R — each cell {i, j} represents the fraction of events which have a true value in bin

I but get reconstructed in bin J.

e |terative unfolding

o Augment R;; by correction factors computed by comparing generated with true parton level data.

¢ Bin-dependent unfolding. ¢ Dimensionality limitations.



Forward simulation

ML-Unfolding

Detector

| Showering, | | |
{ simulation |

' hadronization }

Inversion

4 Bin-independent 4 Able to invert multi-dimensional d.o.f.

Possible with machine learning based generative models.

* Generative Adversarial Networks (GAN) * Normalizing Flows (NF)

* Variational Auto Encoders (VAE)

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder (2020)]
[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]
[Andreassen, Komiske, Metodiev, Nachman, Thaler (2020)]
[Komiske, McCormack, Nachman (2021)]



GANs

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)]
In GANs, the generator and discriminator network [Butter, Plehn, Winterhalder(2019)]

competes against each other.
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GANSs

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)]
In GANs, the generator and discriminator network [Butter, Plehn, Winterhalder(2019)]

competes against each other.
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GANSs

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)]
In GANs, the generator and discriminator network [Butter, Plehn, Winterhalder(2019)]

competes against each other.
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GANSs

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)]
In GANs, the generator and discriminator network [Butter, Plehn, Winterhalder(2019)]

competes against each other.

Detector Generated
N —_— G |
d

[Image adopted from Bellagente, Butter,

Kasieczka, Plehn, Winterhalder (2019)]

* Discriminator works to distinguish generated data LD - <—lOgD()C)>xNP + <—10g(1 — D(x))>x~P
{xg} from truth data {x,}. [D(xp) — 1, D(xs) — 0] P ©
L; = (—logD(x))

.XNPG
e Generator works to fool the discriminator such

that D(x,;) — 1. D(x,) = 1, D(xg) — 0



[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)]

Naive GAN unfolding

pp = ZW = (Z = £7¢7)(W - Jj)

pr;> 25 GeV,|n;| <2.5

. . -2
2 £ + 2 j exclusive x10

@ detector level 1 Truth
......... Eq.(7)

@ Targeted loss terms required for sharp kinematic features. =i - 1l
® Fails if training and test data to not statistically similar. 1.0- | L
Test data 0 25 50 75 100 125 150 175 200

PT ., [GeV]
2 ¢ + 2 ] exclusive @ detector level

30 GeV < pr; <60 GeV,
30 GeV < pr; <50 GeV

Figure taken from Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)




Way-forward: FCGAN

[Image adopted from Bellagente, Butter,
Kasieczka, Plehn, Winterhalder (2019)]
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FCGAN Ly~ =(=logD&x.y)) p . p +(~log(l =DE ) p  p

LG — <— ZOgD(xa y)>xNPG,y~Pd

e Event-by-event matching — exploit the pairing information between

x10~*
parton and detector level. T _—
0 —— FCGAN
* Trained network can be applied to statistically different regions of = qu;
phase space. 30 M "
-I% 90- 1
Test data 2 £ + 2 j exclusive @ detector level L0 J ﬂll\kl\
30 GeV < pp; < 60 GeV, 30 GeV < py; <50 GeV, o
Ji /> 0 25 50 75 100 125 150 175 200
( ~ 14 % of events) pri [GeV]

[Image adopted from Bellagente, Butter,
Kasieczka, Plehn, Winterhalder (2019)]

= Fails with harsher cuts !



Variational Auto Encoders

— Regress detector response function starting from a generator-level jet

[Touranakou, Chernyavskaya, Duarte, Gunopulos, Kansal, Orzari, Pierini, Tomei, Vlimant (2022)]
[Otten, Caron, Swart, Beekveld, Hendriks, Leeuwen, Podareanu, Austri, Verheyen (2019)]

Latent
Gener_ator ' Space | Deteqtor
level jets ,; ,, level jets

L=|ly-DEx)||> + nKL(piz|®]||lq?2))

Reconstruction Loss KL divergence term

[lanazi, Sato, Ambrozewicz, Blin, Melnitchouk, Battaglieri, Liu, Li (2021)]



Variational Auto Encoders

— Regress detector response function starting from a generator-level jet

[Touranakou, Chernyavskaya, Duarte, Gunopulos, Kansal, Orzari, Pierini, Tomei, Vlimant (2022)]

Process: pp > WW — (W — j)H(W — jj)

Training data

Jet constituents: p; > 250 MeV, || < 3.2
Jets (anti-k, with AR = 0.5) : p, > 200 GeV, |n| < 2.5

Input-target jet matched

by minimizing AR
Generator-level | ——mmmmmmm—————e Detector-level



Variational Auto Encoders

Process: pp > WW — (W — j)H(W — jj)

Loss L o Dy, + (1 = p) (L + a,(ml,, — i, )* + a, (pj — P))

P = i
s - —— Reconstruction 1 £ :
2 0.015 —— DL Prediction 1 © B
go) i ]l © )
) () -
2 K% -
£ 0.010| s ;
O o -
Z Z
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Jet pr (GeV) Jet Mass (GeV)

Figures taken from Touranakou, Chernyavskaya, Duarte, Gunopulos, Kansal, Orzari, Pierini, Tomei, Vlimant (2022)

Good agreement between reco and predicted distributions, but jet substructure quantities not well reproduced.



Variational Auto Encoders ™ Unfolding

— Map detector data to the parton level phase space

Parton
Truth

Detector | Latent
data | Space

X | 2o ] X

P

* The Encoder maps the input detector data d to a more tractable latent space 7 = E(d) while preserving the
essential features.

* The decoder maps z to the parton level p’ = D(z) = E(I(d)).

[Otten, Caron, Swart, Beekveld, Hendriks, Leeuwen, Podareanu, Austri, Verheyen (2019)]



Normalizing flows

A Exact likelihood estimation

4 Invertibility
2 NF:capable of bi-directional mapping w/o information loss.
2 VAEs: not strictly invertible due to stochasticity of the latent space.
2 FCGANs: focus on generation (sharper data), and invertibility is not strictly

defined.

I Flexibility:

®NF can model intricate distributions without making strict assumptions.

@®VAEs assume a Gaussian latent space — may not always capture the complexity of
the distributions.

®GANs focus on generating data that matches the target distribution — no explicit
latent mapping and less statistical robustness.



Normalizing flows

e Series of bijective layers that transform complex (Y ) to simple probability distributions (Z).

* Learns both directions of the mapping in parallel — bijectivity encoded in the same network.

o BUiIding bIOCkS —> Inverﬁble COUpling |Clye|'s. [Dinh, Krueger, Bengio (2016), Dinh, Sohl-Dickstein, Bengio (2016)]

Training
PA2) ¢ L] /@ /l Y1 \\ py(y) 4
/k Input< So to 31> <1 Output
g T2 / / O—+—Y2 T g

<

>
Inversion

[Image adapted from Nguyen, Ardizzone, Kothe (2019)
and talk by A. Butter at Pheno-2022]



_ [Image adapted from Nguyen, Ardizzone, Kothe (2019)
NOrmahZIng ﬂOWS and talk by A. Butter at Pheno-2022]
Training
Px(x) 4 L] /Q / i g1 \\ Pr(y) 4
/\ Input So 1o 81> 4lq Output
. ; v VAN »
. 2 ® Y2 y
Inversion
*In the coupling layers, the coupling functions s, * Fully invertible coupling layer — [x;, x,]
and 1, take x, as input, and scale/translate x;. can be reconstructed given [y, y,]
Forward pass: Inverse transformations:
Y| =X © e + 1,(x,) xXp = () — hxy)) © e

y2 =X 0 e +1(y) Xy = (v = 1y(y)) © e



= = [Image adapted from Nguyen, Ardizzone, Kothe (2019)
NOrmahZIng ﬂOWS and talk by A. Butter at Pheno-2022]
Training
Px(0) 4 @ " \\ Pyt
/\ Input‘< Output N\\
/ O—+—¥ "

>

- -

For a coupling block transformation f(x) ~ y

X 5,(x;) .
tractable Jacobian J«(x) : af() [e N ﬁmtel

O eSI(yl)

— rule of change of variables — ensures bijective transformations
Py(xy) = px,) X | det(J(x,)) |~ and exact likelihood estimation



Normalizing flows

[Image adapted from Nguyen, Ardizzone, Kothe (2019)

and talk by A. Butter at Pheno-2022]

Training

<

| 32/ z/ o \>t1 Output /WW
/ AV

2 | Y2 y

>

PX(X) A L

=

X

>

>

Inversion

e Coupling layers stacked together — Invertible Neural Network (INN).

* Typically, DNNs suffer an inherent information loss in the forward direction, making the
inverse mapping ambiguous — Not an issue with INNss.



Naive INN unfolding

(xparton) Forward simulation: g — (x detector)
— -Unfolding: I v
Detector
Ad
True Parton
X




Naive INN unfolding

(’xparton) Forward simulation: § — (xdetector)
{; -Unfc')»IAd‘ing:- g * v
Detector
Xd
True Parton Gen detector
/
Ap Xd



Naive INN unfolding

(xparton) Forward simulation: g —

e m————e el (xdetector)
< Unfolding: g '

Gen Parton g(x,) Detector
4—
/
X, Ad
INN

True Parton g2(xp) Gen detector
_—m- s-r-H r m  :r::r————p ,
X, Xd



Naive INN unfolding Process: pp — ZW — (Z — £T¢7)(W = jj)

[Figure adopted from Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder,

Ardizzone, Kothe (2020]]

(xparton) Forward simulation: § — (xdete Ctor)
| <— -Unfbld‘ing:-g o
¢— Gen Parton g(xy) Detector
e ——
/

X, Xd
X, X

Loss: Ly;gp(x,) + Lyssp(Xs) + Lypp



Naive INN unfOIding [Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]

Process: pp = ZW — (Z = £7¢7)(W = jj)

(xparton) Forward simulation: g —

e T - el (xdetector)
< Unfolding: g '

Training data

Exactly 2 jets: p;, > 25 GeV, |n| < 2.5
SFOS lepton pair near m,

Event-wise matching
Parton-level 4—P| Detector-level




Naive INN unfolding Process: pp — ZW — (Z — £T¢7)(W = jj)

[Figure taken from Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder,

Ardizzone, Kothe (2020]]

(*parton) . St g =gy (Mdetector)
« Unfolding: g '
x10~*
2 jet no ISR
* Differences between generated and parton truth L Parton Truth
' — Parton INN

ot L Detector Truth

deviate in the soft p;; region and tails.
72 —— Detector INN

* Typically inefficient in the inversion of features not
included in event parametrization.

* Dimensionality limitations. 0- I LE . AU - H --------
i |_| = r
0 60 80 100 120
DPT,q, [GGV]




Noise-extended INN Process: pp = ZW = (Z = £7¢7)(W = jj)

x 102
6.0 - i-i 2 jet no ISR
| N T Parton Truth
— 9.07 . Parton INN
T |
X _ Forward S|mulat|on g - L 40 Bt Detector Truth
( parton e ——— SRR ——— xdetect()r 8 | —— Detector INN
7 . «— Unfoldlng g | r sl s
p d ;

* Allows mapping between unequal degrees of
freedom at the parton and detector level.

* MMD terms included for each observable and of ol e
gaussian input — improves unfolding in the low and RN R 1 — Detetor Truth
. . ® =Y —— Detector eINN
high p; regions. L 30-
7 20 elNN
1.0 1
0.0 -
12- -

08 ________ v ﬂfﬂ%ﬂr

0 20 4() 60 80 100 120
pr, 12 [GGV]

[Figure taken from Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]



Noise-extended INN: Limitations and Challenges

* Inclusive detector level information requires using large number of random variables.
* Calibration of weights associated to different loss terms.

e Combination of several loss terms pose training challenges.

— Upgrade to conditional INN




Conditional INN * Generate probability distributions at the parton-level,

given detector-level events x. ...

g (xparton’ i (xdetector) ) — — ih
<« Unf0|dln9- g(ra f(xdeteCtOI')) —_— xparton mapped will-h a
Conditional on [Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder,
PdetectorXdetector) Ardizzone, Kothe (2020])]
Training
<
P2 4 71 o / AN BN PpartonFparon)
/\ Input So to S1 t1 Output
> // \ \ | >
7 L2 ' Y2 Xparton
>
Unfolding [Image adapted from Nguyen, Ardizzone, Kothe (2019)

and talk by A. Butter at Pheno-2022]

Target phase space for unfolding can be chosen flexibly to include:
[ QCD et radiation

[A Particle decays



Unfolding semileptonic 77/ events pp — tth — (t = £uvb)(f = jjb)(h — yy)

= Parton-level: Acceptance cuts
12420+ 2y +v+2) Iyl <4, Inl <5, Inel <4, In|<4
= Detector-level: pry>25GeV, pr;>25GeV, pp,>15GeV, p;, > 15GeV

12+ 2b+ 2y + MET+ < 6 jets inclusive

Challenges:

% Can the unfolding model correctly reconstruct the two hard jets at the parton level from a
variable number of jets at the detector level?

Y How well can the dedicated BSM observables be reconstructed?

% How model-dependent is the training?



Event parametrization

e Event information at the parton level can be parametrised through the 4-momentum of the findl
state particles — may include redundant d.o.f.

® Reconstruction of sharp kinematic features like mass peaks can be challenging:
v' Can be improved by adding targeted maximum mean discrepancy loss:

M Affects only the target distributions [Butter, Plehn, Winterhalder [2019)]
. [Bellagente, Butter, Kasieczka, Plehn, Rousselot,
'Z Avoids |C"'99 model dependence Winterhalder, Ardizzone, Kothe (2020)]

‘Complications in training and performance limitations.

Alternative approach:

— directly learn invariant mass features and important observable with appropriate phase-
space parametrization.

— may provide direct access to the most important BSM observables.



8 (xparton f (xdetector)) —

( P ) T« Unf0|d|ng g(f‘ f(xdetector)) ) ( )

Conditional INN

o We use fhe quesiqn Version of CINN [Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent (2021)]
> Stable network predictions
> Allows the estimation of training-related uncertainties.

e Degrees of freedom:

Parton-level: (t — #vb)(f — jjb)h Detector-level: 46 d.o f.
22 d.o.f. 124 2b+2y+ MET+ < 6 jets inclusive

A natural parametrization involving top mass:

W %4
{ My, P1.1> Ny G, My, 77{4/’ ¢X€V’ Ng u ¢f,u }

Dy ny ‘prfs‘ -~ ¢CS my ,

o Alternatively, redefine the parton level - sign(Agy,) my, ‘_)ﬂ‘ 0p 715,
parametrization including the important CP | sign(Agy, Dy | P10, ApL, | Pl

observables



CP measurement in Higgs-top interactions

* New sources of CPV interactions can explain the matter-antimatter asymmetry in the
universe.

® One such scenario: CP violation in the Higgs sector.

e CPV in hVV interactions is extensively tested at the LHC.

[ See for instance: G. Aad et al. (1506.05669), G. Aad et al. (1602.04516), A. M. Sirunyan et al. (1707.00541), A. M. Sirunyan et al.
(1903.06973), A. M. Sirunyan et al.(1901.00174), G. Aad et al. (2002.05315), Bernreuther, Gonzalez, Wiebusch (2010), Englert,
Goncalves, Mawatari, Plehn (2012), Djouadi, Godbole, Mellado, Mohan (2013), Anderson, Bolognesi, Caola, Gao et al. (2013)]

e CPV in hff couplings manifest at tree-level: L
— desirable choice: /11 :

|



Direct probes at the LHC

K =

m

thhf(cos a + iys sSin )t

Vv

® pp — h (+ jets): indirect constraints.

=y ) B B BRI BB L BN R BRI BLEL R o

_ . . % - — o - Best fit X SM -

e pp — tth stands out as the viable direct probe: OIS w2 e, E
| =

4 Small rate at the LHC and complex topology. 0.5F- =
4 Silver Lining: Observation at 5.20 by ATLAS oF L+ E
2004.04545] and 6.65 by CMS [2003.10866] e :
e N :

- ATLAS E

e Current limits: |a| < 43° (ATLAS) and |a| < 559  ~'°F fs=13Tev, 13910’ E
(CMS), at 95 % CL. 23505 0 05 1 i 2
K,cos (o)

SM: (k,, &) = (1,0)

[Ducaq, Kilgore, Oleari, Schmidt, Zeppenteld (2001), Klamke, Zeppenfeld
(2007), Grojean et al. (2013), Dolan, Harris, Jankowiak, Spannowsky (2014)]

Improved statistics @ HL-LHC paves the pathway for precision studies.



tt(h — yy) @ HL-LHC

Importance matrix at the non-linear level

0* - Information I' in CP-even observables
relative to full information

myy 1 0.31

I Xk
My, Pt h Mt by, A®g Ang My Mg 6

Sensitive to non-linear new physics effects.

[RKB, Goncalves, Kling (2021)]



CP-odd observables

0.18- -=- SM(a=0) === a=-mn/4
——— g= 42 a= +nmn/4
. _25 : : 8 017 TN .
e Short lifetime for r (107 §) — Spin correlations can be traced back T - Dl
o ) :,{\ ,/ \\\ \\\ ,,/
from their decay products. 2 016] " My M. o
: // \\\ ,)\/\ \\
: : 8 ) P i
® CP-odd observables constructed from antisymmetric tensor products = Partonlevel =i
] N T
e(ptapt’piapj) ~ CupeP; PiP; P - ] g Lljeme
— L pXP;  PiXD 2 ]
Agjj=sgn [ (xp) | arccos | SEs o | BROFm NN A
pxpil Apexpil @ SEE e
-3 -2 -1 0 1 2 3
AOT
A\Information | in CP-sensitive observables Spi | . | . h h . | . ﬂ
< opin correlations scale with the spin analysing power p..
. 2 B seminngSQ:(c: 222222: [Mileo, Kiers, Szynkman, Crane, Gegner (2016); Goncalves, Kong, Kim (2018)]; RKB, Goncalves, Kling (2021)]
10 | - 3 di-leptonic channel
- N nl1 =
- Bl el | B/IA~04?
z 1 dI 1 dlogp(x|k,a) dlogp(x |k, a) | i
£ 107 9 NE H - _' = — (1 + f.P, cos 51) Fisher Info = E gp(x | gp(x | |
= - 1B S S . I'dcosé 2 da da
a 2 g [ ] (] [ ] [ ] [ ] [ ] [ ]
102 cMEMNE e Kinematic reconstruction efficiency is limited at the detector level

o
R
S

Full 2 tlie Wb LjoW bW b,

Use Machine learning techniques to maximize the extraction of NP

[RKB, Goncalves, Kling (2021)] information from CP observables.



Back to results from unfolding with cINN...

Challenges:

% Can the unfolding model correctly reconstruct the two hard jets at the parton level from a
variable number of jets at the detector level?

Y How well can the dedicated BSM observables be reconstructed?

% How model-dependent is the training?



Jet combinatorics

Parton level truth and unfolded top invariant masses m, and m,

x1077
0.4 -
> cINN >, o cINN
.4&; 3.2 - —— o v— ———- h
< ) truth o Z 0.3 - trut .
) Jp) Q C£
T 249 F — ©
o = o
N i - N
:Tt'; 1.6 1 I:'I =
= :
8 0.8 - cﬂé S g
- 5 :
Z | = - il = -
Z 45 1.]. ___- - Z 45 1 1 _____ =
ol & 0.9 - Sl =
| | | | | | |
450 600 750 165 170 175 180
m,; [GeV] m, [GeV]

% Unfolded distributions in good agreement with parton level truth despite added

combinatorial ambiguity at the detector level.




Back to results from unfolding with cINN...

Challenges:

% Can the unfolding model correctly reconstruct the two hard jets at the parton level from a
variable number of jets at the detector level?

Y How well can the dedicated BSM observables be reconstructed?

% How model-dependent is the training?



Reconstruction of dedicated observables

gen

Parton level truth and unfolded SM for O, A¢, , and b,.

normalized density
= Si = o
TN
1 | |

o
pd
1

uth
o
O

1

- i

% Unfolded distributions in close agreement with truth:
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v Close agreement even for observables not included in event parametrization.
v Full phase space reconstruction.

% Potential differences from the truth are covered by the uncertainty estimates of the
Bayesian network.




Back to results from unfolding with cINN...

Challenges:

% Can the unfolding model correctly reconstruct the two hard jets at the parton level from a
variable number of jets at the detector level?

Y How well can the dedicated BSM observables be reconstructed?

% How model-dependent is the training?



Model dependence | unfolding SM events using networks trained on events with different

amounts of CP-violation.

We train 3 networks on a = + 7/4, — n/4 and SM, respectively

g 0.4 - g oy CINN
8 =~ o 1.2 ———- truth
S 0.3 - 5
E ?;) 0.8 -
N 0.2 - - ) _
: ” = 04
5 0.1 - : . =
- < - =
- ~—
Z|E1.1 9. . S Z |5 1.1 - =
) - e ===—== - = A
SlE09 1 F ' G100 ™ "
0.8 16 24 —0.8 —0.4 0.0
QCS b4

% Networks trained on a = z/4 and —z/4 show only a slight bias towards broader 6 and flatter
b, distributions.

% ~ 10 — 20 % bias = much smaller than the changes at parton truth from varying «.




Model dependence Unfolding events with CP-violation using a network trained on SM

e I events.

Train network on SM dataset

Unfold a = + #/4, — 7/4 and SM dataset

2

= 0.4 - g g | .

5 e 2 1.2 -

< 0.3 - 9

E D 0.8 -

'.T“; 0.2 . % % c%

S 014 ¢ - 0.4 -

= 0.1 &

8 .: ---- truth S

3 S <
215 1] fapenmamtroan ) Z <€ 1.1 - e
ol 8 0.9 - | | | % g 0. - |
08 1.6 2.4 —0.8 —0.4 0.0 04 038
QCS b4

% Again, the effect of bias is much smaller than the effect of « on the data.




Outlook

e Generative unfolding makes it possible to invert high-dimensional distributions and full phase-
space reconstruction.

* The trained cINN behaves as an efficient kinematic reconstruction algorithm capable of
tackling complex reconstruction challenges.

* The trained unfolding network was able to
e extract various CP observables at the parton level with appropriate phase space
parametrization.
* resolve jet combinatorial ambiguity.
* absolve any large model-dependence.

e While this study is clearly not the last word on this analysis technique, it presents a promising
outlook for an experimental study, with a proper treatment of statistical limitations, continuum
backgrounds, calibration, and iterative improvements of the unfolding network.
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