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Unfolding

ℒ Parton-level

Forward simulation

Showering, 
hadronization

Detector 
simulation

Inversion 

• Conventional LHC analysis involves comparing measured data with MC events simulated under NP hypothesis.  

• Reconstructed LHC events present a convoluted version of the true underlying physics. 

• Forward simulation chain can be highly resource intensive. 

Invert simulation chain  apply on measured data  reconstruct parton-level→ →

 compare new physics hypotheses at the parton-level. →



Unfolding

• Bin-by-bin unfolding: 
• Correct the information in each bin using correction factor  computed from MC data.𝒞i

xp,i = xd,i × 𝒞i

𝒞i = Ntruth,i/Nreco,i
Parton truth Detector level

Unfolded distribution:

• Matrix inversion: 
• Build response matrix   each cell  represents the fraction of events which have a true value in bin 

 but get reconstructed in bin . 
R → {i, j}

i j

❖ Dimensionality limitations.❖ Bin-dependent unfolding.  

• Iterative unfolding  

• Augment  by correction factors computed by comparing generated with true parton level data.   Rij



ML-Unfolding

 Bin-independent 

Possible with machine learning based generative models.

 Able to invert multi-dimensional d.o.f.

ℒ Hard scattering

Forward simulation

Showering, 
hadronization

Detector 
simulation

Inversion 

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder (2020)]  
[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]   

[Andreassen, Komiske, Metodiev, Nachman, Thaler (2020)] 
[Komiske, McCormack, Nachman (2021)]

•Generative Adversarial Networks (GAN) 

•Variational Auto Encoders (VAE) 

•Normalizing Flows (NF) 



GANs
[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)] 

[Butter, Plehn, Winterhalder(2019)]In GANs, the generator and discriminator network 
competes against each other. 
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[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)] 
[Butter, Plehn, Winterhalder(2019)]In GANs, the generator and discriminator network 

competes against each other. 
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[Image adopted from Bellagente, Butter, 
Kasieczka, Plehn, Winterhalder  (2019)]

•Discriminator works to distinguish generated data 
 from truth data . [ ] 

•Generator works to fool the discriminator such 
that . 

{xG} {xp} D(xP) → 1, D(xG) → 0

D(xG) → 1

MMD



Naive GAN unfolding
 pp → ZW → (Z → ℓ+ℓ−)(W → jj)

Figure taken from Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019) 

Training data 

pT,j > 25 GeV, |ηj | < 2.5

Parton-level Detector-level

2  + 2  exclusive 

@ detector level
ℓ j

 
 

30 GeV < pT,j1 < 60 GeV,
30 GeV < pT,j2 < 50 GeV

Test data

2  + 2  exclusive @ detector levelℓ j

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)] 

๏ Targeted loss terms required for sharp kinematic features.  

๏ Fails if training and test data to not statistically similar.  



Way-forward: FCGAN
[Image adopted from Bellagente, Butter, 
Kasieczka, Plehn, Winterhalder  (2019)]
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FCGAN

• Event-by-event matching  exploit the pairing information between 
parton and detector level. 

• Trained network can be applied to statistically different regions of 
phase space. 

→

[Image adopted from Bellagente, Butter, 
Kasieczka, Plehn, Winterhalder  (2019)]

LFC
D = ⟨−logD(x, y)⟩x∼Pp,y∼Pd

+ ⟨−log(1 − D(x, y))⟩x∼PG,y∼Pd

LG = ⟨−logD(x, y)⟩x∼PG,y∼Pd

 , 
( of events)

30 GeV < pT,j1 < 60 GeV, 30 GeV < pT,j2 < 50 GeV
∼ 14 %

Test data 2  + 2  exclusive @ detector levelℓ j

➡ Fails with harsher cuts !



Variational Auto Encoders

[Touranakou, Chernyavskaya, Duarte, Gunopulos, Kansal, Orzari, Pierini, Tomei, Vlimant (2022)]

 Regress detector response function starting from a generator-level jet→

En
co

de
r (

)E

De
co

de
r (

)
D

Generator 
level jets

Latent 
Space 

z(σ, μ)

Detector 
level jets

[Otten, Caron, Swart, Beekveld, Hendriks, Leeuwen, Podareanu, Austri, Verheyen (2019)]

L = | |y − D(E(x)) | |2

[lanazi, Sato, Ambrozewicz, Blin, Melnitchouk, Battaglieri, Liu, Li (2021)]

η KL(p(z |x) | |q(Z))
Reconstruction Loss KL divergence term

+



Variational Auto Encoders

[Touranakou, Chernyavskaya, Duarte, Gunopulos, Kansal, Orzari, Pierini, Tomei, Vlimant (2022)]

 Regress detector response function starting from a generator-level jet→

Process: pp → WW → (W → jj)(W → jj)

Training data 

Jet constituents: pT > 250 MeV, |η | < 3.2

Jets (anti-  with ) : kT ΔR = 0.5 pT > 200 GeV, |η | < 2.5

Generator-level Detector-level

Input-target jet matched 

by minimizing ΔR



Variational Auto Encoders

Figures taken from Touranakou, Chernyavskaya, Duarte, Gunopulos, Kansal, Orzari, Pierini, Tomei, Vlimant (2022)

Process: pp → WW → (W → jj)(W → jj)

Loss L ∝ βDi
KL + (1 − β)(Li

R + αm(mi
jet − m̃i

jet)
2 + αpT

(pi
T − p̃i

T)2)

Good agreement between reco and predicted distributions, but jet substructure quantities not well reproduced.



Variational Auto Encoders

 Map detector data to the parton level phase space→

En
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de
r (

) E
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Detector 

data 

xd

Latent 
Space 
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Parton 

Truth 
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Unfolding

• The Encoder maps the input detector data  to a more tractable latent space  while preserving the 
essential features. 

•The decoder maps  to the parton level . 

d z = E(d)

z p′￼ = D(z) = E(l(d))

[Otten, Caron, Swart, Beekveld, Hendriks, Leeuwen, Podareanu, Austri, Verheyen (2019)]



Normalizing flows 

Exact likelihood estimation  

Invertibility :  
 NF:capable of bi-directional mapping w/o information loss.  
 VAEs: not strictly invertible due to stochasticity of the latent space.  
 FCGANs: focus on generation (sharper data), and invertibility is not strictly 

defined. 

Flexibility: 
๏NF  can model intricate distributions without making strict assumptions.  

๏VAEs assume a Gaussian latent space  may not always capture the complexity of 
the distributions.  

๏GANs focus on generating data that matches the target distribution  no explicit 
latent mapping and less statistical robustness.

→

→



Normalizing flows

• Series of bijective layers that transform complex (  ) to simple probability distributions ( ). 

• Learns both directions of the mapping in parallel  bijectivity encoded in the same network.  

•Building blocks  Invertible coupling layers. 

Y Z

→

→

[Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]

Inversion

Training

pZ(z)

z x

pY(y)

[Dinh, Krueger, Bengio (2016),  Dinh, Sohl-Dickstein, Bengio (2016)]



Normalizing flows [Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]

Inversion

Training

pX(x)

x y

pY(y)

•In the coupling layers, the coupling functions  
and  take  as input, and  scale/translate .   

s2
t2 x2 x1

Forward pass:  
 y1 = x1 ⊙ eS2(x2) + t2(x2)

y2 = x2 ⊙ eS1(y1) + t1(y1)

Inverse transformations:  
 x1 = (y1 − t2(x2)) ⊙ e−s2(x2)

x2 = (y2 − t1(y1)) ⊙ e−s2(y1)

•Fully invertible coupling layer  [ ] 
can be reconstructed given [ ]

→ x1, x2
y1, y2



Normalizing flows [Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]

Inversion

Training

pX(x)

x y

pY(y)

Forward pass:  
 y1 = x1 ⊙ eS2(x2) + t2(x2)

y2 = x2 ⊙ eS1(y1) + t1(y1)

For a coupling block transformation f(x) ∼ y

tractable Jacobian  : Jf(x) ∂f(x)
∂x = [eS2(x2) finite

0 eS1(y1)]
 rule of change of variables  →

pY(xd) = pZ(xp) × |det(Jf(xp)) |−1
 ensures bijective transformations 

and exact likelihood estimation
→

Inverse transformations:  
 x1 = (y1 − t2(x2)) ⊙ e−s2(x2)

x2 = (y2 − t1(y1)) ⊙ e−s2(y1)



Normalizing flows [Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]

Inversion

Training

pX(x)

x y

pY(y)

• Coupling layers stacked together  Invertible Neural Network (INN).  

• Typically, DNNs suffer an inherent information loss in the forward direction, making the 
inverse mapping ambiguous  Not an issue with INNs.

→

→



Naive INN unfolding

(xparton) (xdetector)Forward simulation: ḡ →

 Unfolding: ← g

INN
True Parton


xp
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Naive INN unfolding

(xparton) (xdetector)Forward simulation: ḡ →

 Unfolding: ← g

INN
True Parton


xp

Gen Parton

x′￼p

Gen detector

x′￼d

Detector

xd

g(xP)

ḡ(xd)



Naive INN unfolding

(xparton) (xdetector)Forward simulation: ḡ →

 Unfolding: ← g

[Figure adopted from Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, 
Ardizzone, Kothe (2020)]

Process: pp → ZW → (Z → ℓ+ℓ−)(W → jj)

Loss: LMSE(xp) + LMSE(xd) + LMMD

INN
True Parton


xp

Gen Parton

x′￼p

Gen detector

x′￼d

Detector

xd

LMSE,MMD LMSE,MMD

g(xP)

ḡ(xd)



Naive INN unfolding

(xparton) (xdetector)Forward simulation: ḡ →

 Unfolding: ← g

[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]

Process: pp → ZW → (Z → ℓ+ℓ−)(W → jj)

Training data 

Exactly 2 jets: pT > 25 GeV, |η | < 2.5

Parton-level Detector-level
Event-wise matching

SFOS lepton pair near mZ



Naive INN unfolding

(xparton) (xdetector)Forward simulation: ḡ →

 Unfolding: ← g

[Figure taken from Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, 
Ardizzone, Kothe (2020)]

Process: pp → ZW → (Z → ℓ+ℓ−)(W → jj)

•Differences between generated and parton truth 
deviate in the soft  region and tails.  

•Typically inefficient in the inversion of features not 
included in event parametrization. 

•Dimensionality limitations. 

pT,j2



Noise-extended INN

(xparton
rp ) (xdetector

rd )
Forward simulation: ḡ →

 Unfolding: ← g

[Figure taken from Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]

Process: pp → ZW → (Z → ℓ+ℓ−)(W → jj)

•Allows mapping between unequal degrees of 
freedom at the parton and detector level.  

•MMD terms included for each observable and 
gaussian input  improves unfolding in the low and 
high  regions.  

→
pT

Naive INN

eINN



Noise-extended INN: Limitations and Challenges

•Inclusive detector level information requires using large number of random variables. 

•Calibration of weights associated to different loss terms.  

•Combination of several loss terms pose training challenges.  

 Upgrade to conditional INN→



Conditional INN • Generate probability distributions at the parton-level, 
given detector-level events xdetector

Unfolding

Training

pZ(z)

z xparton

pparton(xparton)

Conditional on 

pdetector(xdetector)

(xparton) (r)
ḡ(xparton, f(xdetector)) →

 Unfolding: ← g(r, f(xdetector))

Target phase space for unfolding can be chosen flexibly to include: 
QCD jet radiation 
Particle decays

 Conditional on  
  mapped with 

⟶ xdetector
⟶ xparton r

[Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]

[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, 
Ardizzone, Kothe (2020)]



➡ Parton-level:  
  

➡ Detector-level:  
       jets inclusive

1ℓ + 2b + 2γ + ν +2j

1ℓ + 2b + 2γ + MET + ≤ 6

★ Can the unfolding model correctly reconstruct the two hard jets at the parton level from a 
variable number of jets at the detector level?  

★ How well can the dedicated BSM observables be reconstructed? 

★ How model-dependent is the training? 

Unfolding semileptonic  events tt̄h  pp → tt̄h → (t → ℓνb)(t̄ → jjb̄)(h → γγ)

pT,b > 25 GeV , pT,j > 25 GeV , pT,ℓ > 15 GeV , pT,γ > 15 GeV

|ηb | < 4 , |ηj | < 5 , |ηℓ | < 4, |ηγ | < 4
Acceptance cuts 

Challenges:



Event parametrization

• Event information at the parton level can be parametrised through the 4-momentum of the final 
state particles   may include redundant d.o.f.  

• Reconstruction of sharp kinematic features like mass peaks can be challenging:  
✓  Can be improved by adding targeted maximum mean discrepancy loss: 

→

[Butter, Plehn, Winterhalder (2019)] Affects only the target distributions 
 Avoids large model dependence 
 Complications in training and performance limitations. 

[Bellagente, Butter, Kasieczka, Plehn, Rousselot, 
Winterhalder, Ardizzone, Kothe (2020)]

Alternative approach:  
 directly learn invariant mass features and important observable with appropriate phase-

space parametrization. 

 may provide direct access to the most important BSM observables.

→

→



Conditional INN (xparton) (r)
ḡ(xparton, f(xdetector)) →

 Unfolding: ← g(r, f(xdetector))

•We use the Bayesian version of cINN 
Stable network predictions 
Allows the estimation of training-related uncertainties.  

  
• Degrees of freedom: 

[Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent (2021)] 

Detector-level:  
       jets inclusive1ℓ + 2b + 2γ + MET + ≤ 6

 Parton-level:  (t → ℓνb)(t̄ → jjb̄)h 46 d.o.f.

22 d.o.f.

A natural parametrization involving top mass:  

{ mt, pT,t, ηt, ϕt, mW, ηt
W, ϕt

W, ηW
ℓ,u, ϕW

ℓ,u }
•Alternatively, redefine the parton level 
parametrization including the important CP 
observables

 

 

⃗ptt̄, mtℓ, | ⃗pCS
tℓ | , θCS

tℓ , ϕCS
tℓ , mth,

sign(Δϕtt̄
ℓν) mWℓ

| ⃗ptt̄
ℓ | , θtt̄

ℓ , ϕtt̄
ℓ , | ⃗ptt̄

ν |
sign(Δϕtt̄

du) mWh
, | ⃗ptt̄

d | , θtt̄
d , Δϕtt̄

ℓd, | ⃗ptt̄
u |



• New sources of CPV interactions can explain the matter-antimatter asymmetry in the 
universe. 

•One such scenario: CP violation in the Higgs sector. 

• CPV in  interactions is extensively tested at the LHC. hVV

CP measurement in Higgs-top interactions

• CPV in  couplings manifest at tree-level:                                                                             
 desirable choice: 

hff̄
→ htt̄

[ See for instance: G. Aad et al. (1506.05669), G. Aad et al. (1602.04516), A. M. Sirunyan et al. (1707.00541), A. M. Sirunyan et al. 
(1903.06973), A. M. Sirunyan et al.(1901.00174), G. Aad et al. (2002.05315), Bernreuther, Gonzalez, Wiebusch (2010), Englert, 
Goncalves, Mawatari, Plehn (2012), Djouadi, Godbole, Mellado, Mohan (2013), Anderson, Bolognesi, Caola, Gao et al. (2013)]



Direct probes at the LHC

•  stands out as the viable direct probe: 


✦  Small rate at the LHC and complex topology.          

✦ Silver Lining: Observation at  by ATLAS 

[2004.04545] and  by CMS [2003.10866]


• Current limits:  (ATLAS) and  
(CMS), at CL.

pp → tt̄h

5.2σ
6.6σ

|α | < 430 |α | < 550

95 %

SM: (κt, α) = (1,0)ℒ = −
mt

v
κtht̄(cos α + iγ5 sin α)t

• : indirect constraints. 
  

pp → h (+ jets)

ATLAS: 2004.04545

[Duca, Kilgore, Oleari, Schmidt, Zeppenfeld (2001), Klamke, Zeppenfeld 
(2007), Grojean et al. (2013), Dolan, Harris, Jankowiak, Spannowsky (2014)]

Improved statistics @ HL-LHC paves the pathway for precision studies.



 @ HL-LHCtt̄(h → γγ)
Importance matrix at the non-linear level

Sensitive to non-linear new physics effects.

[RKB, Goncalves, Kling (2021)]



CP-odd observables 

•Short lifetime for   Spin correlations can be traced back 
from their decay products. 

•CP-odd observables constructed from antisymmetric tensor products 
: 

t (10−25 s) →

ϵ(pt, pt̄, pi, pj) ∼ ϵμνρσ pμ
t pν

t̄ pρ
i pσ

j

Δϕtt̄
ij =sgn [ ⃗pt⋅( ⃗pi× ⃗pj)] arccos[ ⃗pt× ⃗pi

| ⃗pt× ⃗pi |
⋅

⃗pt× ⃗pj

| ⃗pt× ⃗pj | ]

[Mileo, Kiers, Szynkman, Crane, Gegner (2016); Goncalves, Kong, Kim (2018)]; RKB, Goncalves, Kling (2021)]
 Spin correlations scale with the spin analysing power .← βi

Use Machine learning techniques to maximize the extraction of NP 
information from CP observables.

Parton-level 

• Kinematic reconstruction efficiency is limited at the detector level  

A
B

 B/A ∼ 0.42

1
Γ

dΓ
d cos ξi

=
1
2 (1 + βiPt cos ξi) Fisher Info = 𝔼 [ ∂ log p(x |κt, α)

dα
∂ log p(x |κt, α)

dα ]

[RKB, Goncalves, Kling (2021)]



Back to results from unfolding with cINN… 

★ Can the unfolding model correctly reconstruct the two hard jets at the parton level from a 
variable number of jets at the detector level?  

★ How well can the dedicated BSM observables be reconstructed? 

★ How model-dependent is the training? 

Challenges:



Jet combinatorics
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★ Unfolded distributions in good agreement with parton level truth despite added 
combinatorial ambiguity at the detector level.  

Parton level truth and unfolded top invariant masses  and mtℓ mth
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Back to results from unfolding with cINN… 

★ Can the unfolding model correctly reconstruct the two hard jets at the parton level from a 
variable number of jets at the detector level?  

★ How well can the dedicated BSM observables be reconstructed? 

★ How model-dependent is the training? 

Challenges:



Reconstruction of dedicated observables
Parton level truth and unfolded SM for ,  and . θCS Δϕtℓth b4

★ Unfolded distributions in close agreement with truth: 
✓ Close agreement even for observables not included in event parametrization. 
✓ Full phase space reconstruction. 

★ Potential differences from the truth are covered by the uncertainty estimates of the 
Bayesian network. 



Back to results from unfolding with cINN… 

★ Can the unfolding model correctly reconstruct the two hard jets at the parton level from a 
variable number of jets at the detector level?  

★ How well can the dedicated BSM observables be reconstructed? 

★ How model-dependent is the training? 

Challenges:



Model dependence

★ Networks trained on  and  show only a slight bias towards broader  and flatter 
 distributions. 

★ bias  much smaller than the changes at parton truth from varying .

α = π/4 −π/4 θCS
b4

∼ 10 − 20 % → α
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Model dependence

★Again, the effect of bias is much smaller than the effect of  on the data.  α

Train network on SM dataset

Unfold  and SM datasetα = + π/4, − π/4
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Unfolding events with CP-violation using a network trained on SM 
events. 



Outlook

• Generative unfolding makes it possible to invert high-dimensional distributions and full phase-
space reconstruction.  

• The trained cINN behaves as an efficient kinematic reconstruction algorithm capable of 
tackling complex reconstruction challenges.  

• The trained unfolding network was able to 
• extract various CP observables at the parton level with appropriate phase space 

parametrization. 
• resolve jet combinatorial ambiguity. 
• absolve any large model-dependence.    

• While this study is clearly not the last word on this analysis technique, it presents a promising 
outlook for an experimental study, with a proper treatment of statistical limitations, continuum 
backgrounds, calibration, and iterative improvements of the unfolding network.



Thank you


