PBH Formation from QCD Axion Bubbles as SMBH Seeds

Based on JCAP10(2023)049, arXiv:2310.13333.

Collaboration with K. Kasai, M. Kawasaki, N. Kitajima, K. Murai, and F. Takahashi.

Shunsuke Neda(ICRR, University of Tokyo), Berkeley Week 2024 (Mar. 15, 2024)

To build the model of primordial origin of SMBH which is consistent with observations

Backgrounds

Supermassive Black Hole (SMBH)

• SMBH= $\mathcal{O}(10^6) M_{\odot}$ black holes, which are frequently observed at the center of galaxy.

• Quite large SMBH (e.g. $10^{7-9} M_{\odot}$) is observed at high red shift (e.g. $z \sim 7 - 10$)

or

non-standard BH origin: PBH

non-standard BH growth: super-Eddington accretion

Primordial Black Hole (PBH)

• Hypothetical black hole which formed from overdense region in the early universe.

• Lots of motivations: DM, GW source, SMBH seed, etc.

• Formation condition: Their density contrast exceeds some threshold. [B. J. Carr(1975), Harada et. al.(2022)]

$$\delta = \frac{\rho - \rho_{BG}}{\rho_{BG}} > \mathcal{O}(1)$$


```
energy density : \rho
BG energy density : \rho_{BG}
```

Constraints on PBH

• Simplest model: PBH formation from inflationary density fluctuations

6

Constraints on PBH

Overview of the Model

PBH Formation from QCD Axion Bubbles Previous study[N. Kitajima & F. Takahashi(2020)]

PBH Formation from QCD Axion Bubbles Previous study[N. Kitajima & F. Takahashi(2020)]

① During inflation, axion field acquires quantum fluctuations as a spectator field.

2 Axion acquires a temporal potential and starts oscillation.

field value settles down to minima

PBH Formation from QCD Axion Bubbles

③ Around the QCD phase transition, axion acquires its mass thanks to the non-perturbative QCD effect.

$$V_{\text{QCD}}(\phi) = m_a^2(T) f_a^2 \left(1 - \cos \frac{\phi}{f_a} \right)$$

overdense & rare axion bubble

background & homogeneous ← → dark matter

PBH Formation from QCD Axion Bubbles Previous study[N. Kitajima & F. Takahashi(2020)]

Details of the model

Dark Matter(DM) Abundance Previous study [N. Kitajima & F. Takahashi (2020)]

Axion oscillation starts

$$m_a(T_{\rm osc}) = 3H(T_{\rm osc})$$

- Axion number density. $n_a(T_{\rm osc}) \simeq \frac{1}{2} m_a(T_{\rm osc}) \phi_{\rm osc}^2$
- To account for the DM abundance, we set,

$$\frac{\phi_{\min}^{(0)}}{f_a} = 4.25 \times 10^{-3} \left(\frac{g_{\rm osc}}{60}\right)^{0.21}$$

Threshold for PBH Formation Previous study[N. Kitajima & F. Takahashi(2020)]

- PBH formation condition $\mathcal{O}(1) < \delta \simeq \frac{\rho_a}{\rho_{BG}} \propto a$
- $\rho_a > \rho_{BG}$ inside axion bubble at $T_{\rm B} = \frac{4}{3} m_a \frac{n_a}{s} \Big|_{\rm bubble}$
- The lower bound on the PBH mass $M_c \simeq 1.68 \times 10^4 M_{\odot} \left(\frac{f_a}{10^{16} \text{ GeV}} \right)$

axion density: $\rho_a \propto a^{-3}$ BG radiation density: $\rho_{BG} \propto a^{-4}$

PBH Formation

Gravitational interactions start after the horizon re-entering.

- → PBH formation \Rightarrow at horizon re-entering
- \Rightarrow density fluctuations

time of horizon exit \leftrightarrow scale of perturbation

Volume Fraction of Axion Bubbles Previous study[N. Kitajima & F. Takahashi(2020)]

Axion field value at the horizon exit
 Axion bubble formation

• Probability distribution for the coarse-grained axion field, $P(N, \phi)$.

$$\frac{\partial P(N,\phi)}{\partial N} = \frac{H_{\inf}^2}{8\pi^2} \frac{\partial^2 P(N,\phi)}{\partial \phi^2}$$

 $P(N = 0, \phi; \phi_i) = \delta(\phi - \phi_i)$

Volume fraction of axion bubbles $\beta(\phi_i) = \int_{-\infty}^{\infty} P(N_{\text{end}}, \phi; \phi_i) d\phi$ during inflation Gaussian $\sigma \sim H_{
m inf} \sqrt{2}$ $-\phi/f_a$ ϕ_i/f_a

Abundance of PBHs Previous study[N. Kitajima & F. Takahashi(2020)]

• Axion decay constant f_a \longrightarrow PBH mass range

• PBH model for SMBH seed • $f_a = 10^{16} \text{ GeV}$

Mass spectrum with a peak
 monochromatic mass approximation

Abundance of AMCs Previous study [N. Kitajima & F. Takahashi (2020)]

- In this model, small bubbles form axion-dense region, called axion minicluster(AMC).
- AMC fraction to dark matter is, $\frac{\mathrm{d}f_{\mathrm{AMC}}}{=} = \frac{1}{2} \frac{\mathrm{d}\rho_{\mathrm{AMC}}(k)}{\mathrm{d}\rho_{\mathrm{AMC}}(k)}$ $d \ln k$ $d \ln k$ $ho_{
 m DM}$
- Spectrum with a peak

monochromatic mass approximation

Two-point Correlations of PBHs and AMCs Our work[JCAP10(2023)049]

Two-point Correlations of PBHs and AMCs Following previous study[M. Kawasaki, et.al.(2021)]

Correlation function (*i* and *j* specify a PBH)

$$\xi(\mathbf{x}) = \sum_{i \neq j} \frac{M_i M_j}{\rho_{\text{PBH}}^2} \langle \delta^{(3)}(\mathbf{x} - \mathbf{x}_i) \delta^{(3)}(-\mathbf{x}_j) \rangle$$

comes from $\langle \delta_{\rm PBH}(0) \delta_{\rm PBH}(\mathbf{x}) \rangle$

Isocurvature Perturbations Our work[JCAP10(2023)049]

- PBH clustering
 - Isocurvature perturbation

Physical distance

• CMB constraint on isocurvature perturbation

Angular Correlation Functions of SMBH Previous study[**T. Shinohara et.al. (2023)**]

- New observational constraint: Angular correlation function of SMBH.
- The angular correlation function $w(x) = \left\langle \Delta_{\text{PBH}}(0,0) \Delta_{\text{PBH}}(\theta,\varphi) \right\rangle$

where

 $\Delta_{\text{PBH}} = \text{fluctuation of 2D number density}$ $\mathbf{x} = (r, \theta, \varphi)$

• Much larger angular correlation than the observational upper limit.

 $w(0.24^{\circ}) \sim 10^{6-7} \gg w_{\text{upper}}^{(\text{obs})}(0.24) = 5.37$

Suppression of Isocurvature Perturbation Our work[arXiv:2310.13333]

- Idea: PQ-scalar rolling in the early stage of inflation $\Phi = |\Phi| e^{i\frac{\phi}{f_a}}$
- Axion fluctuation is suppressed for large $|\Phi|$

Modified Model Our work[arXiv:2310.13333]

Assumption:

> PQ-scalar potential at $|\Phi| \gtrsim f_a$ \simeq the Hubble-induced mass term

$$V(|\Phi|) \simeq \frac{1}{2} c_I H_{inf}^2 |\Phi|^2, c_I$$

$$\xrightarrow{\text{EOM}} |\Phi| = |\Phi_*| e^{-\lambda H_{\text{inf}}(t-t_*)},$$
$$\lambda = \frac{3}{2} \left(1 \pm \sqrt{1 - \frac{4}{9}c_I} \right)$$

Suppression of Isocurvature Perturbation Our work[arXiv:2310.13333]

The observational constraint is $0.45 \leq \lambda$.

Angular Correlation Function of PBH Our work[arXiv:2310.13333]

The observational constraint is $\lambda \leq 0.8$.

• PBH model with large inflationary curvature fluctuation is strongly constrained by CMB μ -distortion, in the mass region of SMBH seeds.

• To avoid the constraint, PBH formation from axion bubbles is proposed but its spatial distribution has strong observational constraints.

• Our modified model can explain primordial origin of SMBH without any violation of the observational constraints.

Thank you for your attention.