PBH Formation from QCD Axion
Bubbles as SMBH Seeds

Shunsuke Neda(ICRR, University of Tokyo), Berkeley Week 2024 (Mar. 15, 2024)


https://doi.org/10.1088/1475-7516/2023/10/049
https://arxiv.org/abs/2310.13333

To build the model of primordial origin ot
SMBH which 1s consistent with observations



Backgrounds



Supermassive Black Hole (SMBH)

e SMBH=0(10°) M, black holes, which are
frequently observed at the center of galaxy.

e Quite large SMBH (e.g. 107~ M) 1s
observed at high red shift (e.g. z ~ 7 — 10)

—> non-standard BH growth: super-Eddington accretion
or
non-standard BH origin: PBH



Primordial Black Hole (PBH)

 Hypothetical black hole which formed from overdense
region 1n the early universe.

e [ots of motivations: DM, GW source, SMBH seed, etc.

 Formation condition: Their density contrast exceeds
some threshold. [B. J. Carr(1975), Harada et. al.(2022)]

P — PBG > O(1) .
PBG BG energy density : pg

S — energy density : p




Constraints on PBH
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Overview of the Model



PBH Formation from QCD Axion Bubbles

Previous study|N. Kitajima & F. Takahashi(2020)]
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PBH Formation from QCD Axion Bubbles

Previous study|N. Kitajima & F. Takahashi(2020)]

during inflation

(D During inflation, axion field
acquires quantum fluctuations
as a spectator field.
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PBH Formation from QCD Axion Bubbles

3 Around the QCD phase transition,
axion acquires 1ts mass thanks to the

non-perturbative QCD effect.

after inflation

VWitten
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PBH Formation from QCD Axion Bubbles

Previous study|N. Kitajima & F. Takahashi(2020)]
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Detalls of the model



Dark Matter(DM) Abundance

Previous study|N. Kitajima & F. Takahashi(2020)]

e Axion oscillation starts

(: OSC

) = 3H(

OSC)

e Axion number density.

|
( osc) = Tm ( osc) ¢osc
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Threshold for PBH Formation

Previous study|N. Kitajima & F. Takahashi(2020)]

e PBH formation condition
3

X d

O(1) < 6 ~ Pa .ax%on dens%ty: p, X a”
PBG BG radiation density: pp; o a”
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e The lower bound on the PBH mass
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PBH Formation

comoving scale

e (ravitational interactions start '
after the horizon re-entering. Iy horizon scale
=
\ °
—— PBH formation ?D fluctuati classical field collapse
I | | I I
- - S N A
= at horizon re-entering = [ subhorizon W subhorizon
— Fluctuations at the horizon exit .
= density fluctuations 4 ' ' ' scale factor
y inflation log a(?)

time of horizon exit <«— scale of perturbation
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Volume Fraction of Axion Bubbles
Previous study|N. Kitajima & F. Takahashi(2020)]

e Axion field value at the horizon exit e Volume fraction of axion bubbles

B =J PN, s )d¢

— Axion bubble formation

* Probability distribution for the :
coarse-grained axion field, P(N, ¢). ¢c{ Ja

during inflation

OP(N,¢)  H 0*P(N, ¢)
ON  8x2 9?2
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(Gaussian
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Abundance of PBHs

Previous study|N. Kitajima & F. Takahashi(2020)]

e Axion decay constant f,

—> PBH mass range

e PBH model for SMBH seed
— f. =10 GeV

e Mass spectrum with a peak

—— monochromatic mass
approximation
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£, =10'° GeV

Abundance of AMCs

Previous study|N. Kitajima & F. Takahashi(2020)]

dfbub/d In k

e [In this model, small bubbles form axion-dense
region, called axion minicluster(AMO).

e AMC fraction to dark matter 1s,
e 1 dpaye(h) £, = 10" GeV

d ln k B pDM d ln k _ PBH = | » Minicluster

 Spectrum with a peak

dfbub/d In k

—— monochromatic mass
approximation
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Two-point Correlations of PBHs and AMCs

Our work|JCAP10(2023)049]
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Two-point Correlations of PBHs and AMCs

Following previous study|M. Kawasaki, et.al.(2021)]

e (Correlation function (i and j specity a PB

M.M.
x) = ), =5 (80 —x)sP(—x)) — 1

i=j PPBH

comes from <5PBH(O)5PBH(X)>
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Isocurvature Perturbations
Our work[JCAP10(2023)049]

e PBH clustering e CMB constraint on 1socurvature perturbation

— [socurvature perturbation 10°
— f, =10 GeV

10Y F

f, =10'" GeV

6 1SO

BH BH
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fpBH

foom)  ~3x 107 [C. J. Willott et. al.(2010))
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Angular Correlation Functions of SMBH

Previous study|T. Shinohara et.al. (2023)]

e New observational constraint:
Angular correlation function of

SMBH.

 The angular correlation function

w(x) = { Apg(0,0)Apg(6, @) )
where

Appy = fluctuation of 2D number density

X = (r,0,p)
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 Much larger angular correlation than
the observational upper limit.

w(0.24°) ~ 10077
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Suppression of Isocurvature Perturbation
Our work|arXiv:2310.13333]

e Idea: PQ-scalar rolling 1n the early stage of inflation
A
(I) — | (I) | elfa

e Axion fluctuation is suppressed for large | D |




MOdiﬁed MOdel PQ scalar: @, axion field: ¢ = arg®

Our work|arXiv:2310.13333]

e Assumption:

PQ-scalar potential at |® | 2 f,

~ the Hubble-induced mass term

]
V(|®]) ~ EclHi%lf\CD\z, ¢; = O(1)

Re ¢ Im &

’ XThis 1s just an schematic image.




Suppression of Isocurvature Perturbation
Our work|arXiv:2310.13333]
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Angular Correlation Function of PBH
Our work|arXiv:2310.13333]

10 B \ 10 B
quasar constraints
\
g‘\
10° - g 109 |
- quasar constraints -
g N——"
3 aw
4109 >
B fPBH =3 x 10~ 10 10
, // — fppy = 3 X 10
B fPBH =3 x 10~ 1 _—
™ _ fPBH — 3 X 10_11
1 0 —2 | | | | N | | | | | T 1 O —2 I I I I I
1071 1 10 0.4 0.5 0.6 0.7 0.8 0.9
0 |degree| A

The observational constraintis 1 <0.8.

27



Summary

e PBH model with large inflationary curvature fluctuation 1s strongly
constrained by CMB p-distortion, in the mass region of SMBH seeds.

e To avoid the constraint, PBH formation from axion bubbles 1s proposed
but 1ts spatial distribution has strong observational constraints.

e Our modified model can explain primordial origin of SMBH without
any violation of the observational constraints.
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Thank you for your attention.



